
Wide, long, or nested data? Reconciling the machine and human viewpoints

Alan Hall, Michel Wermelinger, Tony Hirst
The Open University, UK

{alan.hall, michel.wermelinger, tony.hirst}@open.ac.uk

Santi Phithakkitnukoon
Chiang Mai University,

Thailand
santi@eng.cmu.ac.th

Abstract
Data expressed in tables may be re-arranged in various forms, while conveying the same information.
This can create a tension when one form is easier to comprehend by a human reader, but another form
is more convenient for processing by machine. This problem has received considerable attention for
data scientists writing code, but rather less for end user analysts using spreadsheets. We propose a new
data model, the “lish”, which supports a spreadsheet-like flexibility of layout, while capturing
sufficient structure to facilitate processing. Using a typical example in a prototype editor, we
demonstrate how it might help users resolve the tension between the two forms. A user study is in
preparation.

1. Introduction

1.1 Background
Data in tabular form are everywhere: government statistics, company accounts, scientific results – to
name but three examples. But beyond the fact of being arranged in rows and columns, the term
“table” covers a multitude of structures, whose choice of layout can affect both efficiency of
processing and ease of human comprehension.

Drawing on relational database theory, Wickham (2014) introduced the concept of “tidy” data as a
standard that can be used to facilitate preparing tabular data for use with analytical tools. Mount &
Zumel (2017) propose “coordinatized” data, performing a similar role: provided a value can be
located in some multi-dimensional space, the underlying model can be agnostic to which form of view
the user prefers.

A common pattern is when some of the columns in a table form a time series of observations, each
row in the table referring to a single subject. A small example is shown in Figure 1(a). This is the wide
form, which is generally the more human-readable but is an example of an “untidy” layout. The long
form, where the time series for all subjects are stacked into a single column, is the one more often
required by analytical tools, and is shown in Figure 1(b).

Figure 1 – a small dataset in (a) wide form, above; and in (b)
long form, right

The work above relates to code-driven analysis of tables. How might these ideas transfer across to
interactive analysis, as performed by end users? The predominant end user tool in this space is the
spreadsheet, which has achieved its popularity due to its usability (in particular, support for direct
manipulation) and its flexibility (Scaffidi, 2016). But in the first author's experience as a professional
analyst, it is rare to see even well-designed spreadsheets in long form. It seems a reasonable
assumption that this is not a good cognitive fit for the user's view of the data. Referring to the
cognitive dimensions of Green & Petre (1996), there is a stronger closeness of mapping between the
user's mental view of the data structure and the wide form than the long one. This may arise from the

PPIG 2018 70 www.ppig.org

enhanced visibility of series that are logically continuous or juxtaposed when the two-dimensional
space is effectively utilised. The secondary notation dimension is also relevant, in that a user can
choose to use spacing, shading, gridlines, etc. to help visualise the structure.

Perhaps not surprisingly, previous work on making the spreadsheet “tidier” has taken the direction of
making it behave more like a relational database. Bakke & Karger (2016) describe a spreadsheet-like
interactive query builder for a backend database, while Chang & Myers (2016) describe a similar tool
which takes JSON as input. Cervesato (2007) and Hawkins et al. (2014) both extend the spreadsheet
itself with the relation as a native object type, while Mangano et al. (2011) describe a hybrid model in
which relational and freeform data can coexist.

These approaches require the user to shift their mindset from arrangements of cells, to entities with
attributes. Even the pivot table (and its more recent counterpart, the unpivot command) forces the user
to this kind of dual view of their data. We are exploring whether an alternative data representation
might allow the user to remain “untidy”, but still provide the machine with sufficient information to
assemble the long form implicitly, behind the scenes. Hence the user may retain the flexibility of
layout that is a strength of the spreadsheet, but be relieved of the burden (both mental and mechanical)
of maintaining and switching between dual copies of the data, the wide and the long. The machine for
its part is able to use the deduced structure to facilitate onward processing and future maintenance of
the model.

Figure 2 – the building blocks of the “lish” data model

PPIG 2018 71 www.ppig.org

1.2 The “lish” data model
In an earlier paper (Hall et al., 2017) we have introduced the “lish” as an alternative model for
spreadsheet-like data. The lish is a list-based model whose main characteristics are shown
diagrammatically in Figure 2. In brief, a lish replaces the usual grid of cells with a list. Each element
of a lish can be either a single cell or a further lish, so nesting is possible to any depth. This enables
the lish to capture grouped and hierarchical structures more expressively than a grid, but a one-
dimensional list is a poor abstraction of a two-dimensional table. So in order to express table- and
array-like behaviours, the first element of every lish has a privileged status: it forms a “template”,
defining a minimum structure with which subsequent elements must conform. For example, a
template that is a list of five cells constrains further elements of that lish to be also lists of five cells.
Such a lish could represent a table with five columns and any number of rows. By applying the
template rule recursively, we can represent more elaborate or higher dimensional structures. In
addition, we developed a typesetting algorithm which ensures that elements associated with a
common template are aligned in an intuitive table-like way.

Here, we extend our earlier work by introducing calculations (after the manner of spreadsheet
formulae) to the lish, with particular reference to the wide vs. long problem. Our goal is to bridge the
cognitive gap between a visual layout that accords with the user's mental model of the data, and a
machine-friendly layout that will facilitate calculation.

2. Case study

2.1 The scenario
We will illustrate an application of the lish using a small fictitious case study. A local chain of retail
outlets has four branches within a town, denoted here simply as North, South, East and West. For
budget monitoring purposes they have collected data on monthly footfall and revenue at each outlet.
The chain is closed on Sundays, and the number of trading days per month has also been recorded.
Using these data, they would like to perform a series of ad hoc calculations, e.g. for total monthly
revenue, and revenue per trading day.

The data as entered into our prototype lish editor are shown in Figure 3. This layout is “untidy” – not
only is it in wide form, but it has some freeform notes along the bottom of the table which the analyst
decided to add, commenting on unusual circumstances in certain months. The grey shaded cells are
our templates: they are either the first element in a lish, or part of a sublist that is itself a template.
Figure 4 shows the same data in long form; in a normalised database, month would be a foreign key in
this table, referring to a separate small table holding the trading days per month information.

2.2 A grouped aggregation
Let us now consider the task of calculating the total revenue across the four branches, for each month.
If using a code-based tool, we should prefer the data to be in the form of Figure 4. The calculation
would then proceed e.g. using a GROUP BY query in SQL. In a spreadsheet, we could accommodate
the same layout using SUMIF, but might prefer the wide layout of Figure 3, which plays better to the
directness supported by the spreadsheet formula model. Instead of working at the level of the whole
table, the user would enter in the first cell of the column a SUM formula referring to the individual
January revenues for the four outlets, and then copy it down the column.

There is a problem with the wide spreadsheet layout, however: although it makes the form of the data
more comprehensible, and formulae more direct, the approach just mentioned would not scale well to
the addition of extra retail outlets. In general, spreadsheet formulae involving cells that are logically
related but not physically adjacent on the sheet are more fiddly to construct and error-prone than those
involving the selection of a single contiguous range.

To produce the monthly totals, we must specify two things: which cells are to be summed (here, all of
the revenue cells), and across what dimensions to sum them (here, we want the row sums – other
options might be the column sums, or the grand total). The lish can help on both counts.

First, the editor supports a cell selection method whereby navigating to any template cell implicitly
selects all those cells for which it is a template, recursively. Go to a column label, and you implicitly

PPIG 2018 72 www.ppig.org

select the column; go to the top left cell in a table, and you select the whole table; go to the very first
cell in the outermost lish, and you “select all”. The lish in Figure 3 has been arranged such that a
single sublist within the main table represents the four smaller tables for the individual branch outlets,
labelled North, South, East and West respectively. The 7 x 3 region of grey cells beginning with
“location”, near the left hand side, is the template for this sublist; it could be visualised as the base
plane upon which identically shaped tables, one for each outlet, are to be stacked. So in the figure,
selecting the column heading for “revenue” has selected that column, which in turn has selected the
equivalent columns in all of the outlets. Although we have “wide” columns, this selection has
unfolded a “long” column that was hidden in plain sight in their midst.

Figure 3 – The retail outlet data in wide form.

Figure 4 – The same data as Figure 3, but in long form (first few cases only)

PPIG 2018 73 www.ppig.org

Second, the editor can deduce from the structure, in just the same way, that the total_revenue
cell labels a single column. So it “knows” that any summary statistics requested from this cell are to
be calculated row-wise. The long column selected in the previous paragraph retains the memory of its
fold points, so can be segmented correctly to produce the required monthly totals.

The formula for total revenue is sum($location.revenue) and is defined only once, in the
head of the total_revenue column. From here, it populates the entire column. The dollar in the
syntax denotes a labelled location in the lish (as opposed to a function name, like sum). The dot, in
the expression location.revenue, avoids potential ambiguity by designating the intended
revenue label to be the one within the location lish. That expression could have been typed
verbatim, but was filled in automatically by the machine: the editor supports a spreadsheet-like
interactive mode for building formulae, in which the user may navigate to a cell in the midst of
formula construction and have that cell's label inserted. So both components of the specification –
what to sum, and across what dimension to sum it – have been specified entirely visually, and in each
case by pointing to a single cell. We don't need an explicit GROUP BY as with the long form. Nor do
we have to reference individually all the columns to be summed, as with the wide form.

2.3 A binary operation
The lish in Figure 3 contains another calculated column (at the far right hand side) in which the
revenue per day has been calculated for each month. The formula for this is $total_revenue /
$trading_days. Both the numerator and denominator are one-dimensional lists of the same
length, so the division is carried out pairwise between their corresponding elements. The result is a
third list of the same length.

Now let us add a slightly more complicated calculation. Suppose we would like revenue per trading
day, as before, but this time broken down by outlet as well as by month. To achieve this, the user first
created an extra column in the original 7 x 3 sublist that is the template for the individual outlets.
Since this sublist is a template, the editor automatically added a similar column for each individual
outlet. Then, the user created a formula, $revenue / $trading_days, at the head of the new
column in the template (the location qualifier for revenue is not needed this time, as unlike in
subsection 2.2 the revenue column is local to the sublist that contains the formula). An excerpt from
the resulting lish is shown in Figure 5.

Once again, pairwise divisions have been carried out between the elements of revenue and the
elements of trading_days, but this time there is not a one-to-one correspondence between the
two. As in the previous subsection, the machine “knows” from the nested structure that, for instance,
the single value of 25 trading days in April, occurring in the denominator, is the counterpart to each of
the four revenue values (one per location) for April, where they occur in the numerator. In the next
section, we provide an overview of how such deductions are made.

Figure 5. An excerpt from the retail outlet data after adding a revenue per day column

3. A brief sketch of lish calculus
In the previous section, we saw examples of the machine using the structure of nested lists and
templates which make up a particular lish to reason intelligently about the calculations required. The
results accord intuitively with our notion of tabular structures, even though the primitive operations
concerned are not defined on those structures: aggregation functions (like summation) are defined on
one-dimensional arrays, and binary operators (like division) are defined on pairs of scalars.

PPIG 2018 74 www.ppig.org

Lish calculus is the name we give to our collection of algorithms that extend the definition of these
operations to the lish. It draws heavily upon the notion of vectorised arithmetic, as defined by the R
programming language (R Core Team, 2018). That language is itself based upon the usual
mathematical definitions of vector and matrix operations, but with the novel addition of a “recycling
rule”, which provides greater flexibility by accommodating operands that may be vectors of different
lengths.

In order to operate upon lishes, we modify vectorised arithmetic in two main ways. The first is fairly
trivial: since the first element of each lish is a template and does not contain ordinary data, it must be
omitted from any arithmetic. For example, if we sum a lish, we do not attempt to include the first
element within the sum. The second modification is more complicated: we need a version of the
recycling rule that will accommodate operands that may be not just of different lengths, but different
depths as well. For example in subsection 2.3, trading_days was a one dimensional list of cells,
whereas revenue was a list of lists of cells. The details of binary operators as defined over lishes are
quite intricate, due to their recursive nature, and are beyond the scope of this paper. But the principle
that underpins them is very simple: we perform pairwise matching between those sublists that were
derived from the same template list. In our implementation, we cache the template with each sublist to
improve the efficiency of this matching. A similar principle applies to aggregation functions, like
sum: we compare those templates that appear within the lish being summed to those within the lish
that is destined to hold the result. Templates that appear in the former but not in the latter identify
which dimensions are to be summed over.

4. Discussion
The case study showed that the lish embodies more of the structure of the data than a flat grid, and
that the machine can use this structure in ways that may help the user. But there is an obvious
objection: when entering the data in lish form, did the user not have to do some extra work up front in
order to define the structure in the first place? If so, perhaps on balance they are no better off than
entering the data in a spreadsheet and performing the wide to long transformation explicitly. We are
planning a user study which should provide some empirical evidence to this question. In the
meantime, we make here a common sense argument based on relative costs and benefits.

Starting to build a model as a lish has some costs compared to building the same model in a
spreadsheet. A blank lish is just a one-dimensional sequence of empty cells, in which tables only
appear once the user starts enclosing sublists from among those cells. Our critical assumption is that
the nested structure of the lish mirrors the way the user visualises the natural hierarchies in their data
(closeness of mapping, again), so that forming a sublist requires minimal mental effort, as well as
minimal mechanical effort (one key-press).

On the credit side, the lish repays the user with some early gratification once a basic structure is in
place. We saw in the case study that formulae can be fewer and simpler than in a spreadsheet, and
instantly populate all their relevant cells. A similar benefit occurs when cells are inserted or deleted in
a template: all dependent tables are grown or shrunk to match accordingly. Just as the time-proven
spreadsheet model gives the user a feeling of direct control by instantly updating values, so the lish
complements that desirable attribute by instantly updating structure.

As an alternative to having the user explicitly lay out the structure, by grouping cells into sublists, we
might consider inferring it by assuming certain spreadsheet conventions (such as column labels
forming the first row of a table). This approach has been successfully applied before: e.g. by Hermans
et al. (2011) to mapping data flow at varying granularity; by Hodnigg & Pinzger (2015), to parsing a
worksheet into cognitive units; and by Kankuzi (2017), to abstracting formula calculations in
narrative form. It has the advantage that it can be applied to a conventional spreadsheet, but would
appear to be more challenging with higher dimensional structures such as those occurring in our case
study. There is also the distinction that explicit structures like the lish produce a clearly deterministic
result, whereas inference relies to some extent on the machine making a correct interpretation of
flexible conventions.

PPIG 2018 75 www.ppig.org

A limitation of the lish is that it has no concept of a foreign key relationship. Since it is a nested
structure it can express relationships of a form where one type of object “owns” a fixed or variable
number of some other type of object. Hence, it can represent a limited class of 1:n relationships
without the need for a foreign key as such. But it is not intended to be a replacement for the relational
model itself. Its domain of application lies rather in a middle ground, as exemplified by our retail
outlets case study, where multi-dimensional data or families of similar tables present scaleability
problems for the spreadsheet, but a relational database would feel over-engineered.

5. Conclusions and future work
We have seen that there can be a tension between data representations that are easily comprehended
by humans and those that are more conveniently processed by machine. A case in point is the choice
between “wide” and “long” tabular data, often occurring where a time series is involved.

The “lish” provides a data model that supports the more human-oriented form for visualisation, while
enabling the machine-oriented form to be accessed readily for calculation. We have shown in our case
study of retail outlet data how an existing model may be expressed in lish form, and how the use of
template cells and implicit data selections can assist the end user in constructing an analysis.

Our next step will be to conduct a user study to evaluate these ideas. First we will seek to verify our
assumption that users comprehend tabular data in the way that we have assumed, and that the lish
representation of “chunks within chunks” does indeed map closely to the user's mental model of a
sequence of tables. We will also seek to evaluate the usability aspect. In particular, we would like to
assess users' perceptions of the relative costs and benefits of constructing a model in lish form – and if
necessary, what we might do to make this balance more favourable.

References
Bakke, E. and Karger, D.R. (2016) Expressive query construction through direct manipulation of

nested relational results. Proceedings of the 2016 International Conference on Management of
Data, 1377-1392.

Cervesato, I. (2007) Nexcel, a deductive spreadsheet. The Knowledge Engineering Review, 22(3),
221–236.

Chang, K. and Myers, B. (2016) Using and exploring hierarchical data in spreadsheets. Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, 2497-2507.

Green, T. and Petre, M. (1996) Usability analysis of visual programming environments: a ‘cognitive
dimensions’ framework. Journal of Visual Languages & Computing, 7(2), 131–174.

Hall, A., Wermelinger, M., Hirst, T. and Phithakkitnukoon, S. (2017) Structuring spreadsheets with the
“lish” data model. Proceedings of the 2017 European Spreadsheet Risk Interest Group
(EuSpRIG) Conference.

Hawkins, T., Lemon, A. and Gibson, A. (2014) Introducing Morphit, a new type of spreadsheet
technology. Proceedings of the 2014 European Spreadsheet Risk Interest Group (EuSpRIG)
Conference.

Hermans, F., Pinzger, M., and Van Deursen, A. (2011) Supporting professional spreadsheet users by
generating leveled dataflow diagrams. Proceedings of the 2011 33rd International Conference
on Software Engineering (ICSE), 451–460.

Kankuzi, B. (2017) Dynamic Translation of Spreadsheet Formulas to Problem Domain Narratives.
Proceedings of the 2017 Annual Workshop of the Psychology of Programming Interest Group
(PPIG), 86-95.

Hodnigg K. and Pinzger, M. (2015) XVIZIT: Visualizing cognitive units in spreadsheets. Proceedings
of the 2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT), 210-214.

PPIG 2018 76 www.ppig.org

Mangano, N., Ossher, H., Simmonds, I., Callery, M., Desmond, M. and Krasikov, S. (2011) Blending
freeform and managed information in tables. Proceedings of the 2011 33 rd International
Conference on Software Engineering (ICSE), 840-843.

Mount, J. and Zumel, N. (2017) Coordinatized data: a fluid data specification. Technical report, Win-
Vector LLC. Available at: http://www.win-vector.com/blog/2017/03/coordinatized-data-a-
fluid-data-specification/

R Core Team (2018) R Language Definition v 3.5.0, section 3.3, “Elementary arithmetic operations”.
Available at: https://cran.r-project.org/doc/manuals/r-release/R-lang.html

Scaffidi, C. (2016) The impact of human-centric design on the adoption of information systems: A
case study of the spreadsheet. Proceedings of the 2016 11th Iberian Conference on
Information Systems and Technologies (CISTI).

Wickham, H. (2014) Tidy data. Journal of Statistical Software, 59(10).

PPIG 2018 77 www.ppig.org

http://www.win-vector.com/blog/2017/03/coordinatized-data-a-fluid-data-specification/
http://www.win-vector.com/blog/2017/03/coordinatized-data-a-fluid-data-specification/

