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Abstract 
Research on Computational thinking (CT) has already entered its second decade, but still lacks a clear 

definition that researchers would agree upon. There are even suggestions that the definition of CT is 

not indispensable and that researchers should focus on other aspects, such as how to include CT in 

courses, curriculums and how to observe the acquisition of CT. However, it is generally agreed that 

CT is an important skill within the computer science, while it also extends beyond computing as being 

a fundamental skill for problem solving in all scientific and engineering disciplines. Moreover, there 

is a great interest of researchers and educators to explore how to include CT in K-12 context. Our 

study builds upon the consensus, that multiple skills are involved in CT. Based on the literature 

review, this study tries to identify a basic, domain independent dimensions of CT that researchers 

agree upon. The results of this study identify abstraction and algorithms as relevant, domain 

independent dimensions to build upon consensus. We hope that the study results will encourage 

further research towards consensus about general, domain independent set of skills that forms CT. 

This would be particularly beneficial in assessing and teaching CT. 

1. Introduction 
The phrase computational thinking (CT) was introduced by Seymour Papert in his seminal book 

Mindstorms: Children, Computers, and Powerful Ideas (Papert, 1980, p.182). His main objective for 

teaching Logo, an educational programming language, was to improve the student's ability to think 

procedurally. Lately, CT has seen enormous growth in popularity, after it was reintroduced and 

popularized by Wing in 2006. Until recently, computing has been considered as a domain specific set 

of problem solving skills possessed by computer scientists, mathematicians and engineers. However, 

in a seminal article published in 2006, Wing described CT as a way of "solving problems, designing 

systems, and understanding human behavior by drawing on the concepts fundamental to computer 

science" (Wing, 2006, p.33). She exposed the ability to think recursively, the use of abstraction and 

decomposition as important skills when dealing with complex tasks. She also argued that 

"computational thinking is a fundamental skill for everyone, not just for computer scientists" (Wing, 

2006, p.33). Since then, CT has received increasing attention among researchers and practitioners 

within the field of education. A development of general-purpose problem solving skills across the 

curriculum is the primary aim of integrating CT into various national curriculums. 

As CT originates from computer science and programming, the common approach to learn and assess 

CT today is by educational programming languages like Scratch, Alice or Snap! It is widely agreed 

that programming is a useful, but domain specific skill, while CT is applicable to wider educational 

spectrum and in everyday life. The shift from computing to the general problem solving domain has 

stimulated researchers to investigate a broader aspects of CT. Recently, CT research in science, 

technology, engineering and mathematics (STEM) disciplines emerge as prevalent (Khine, 2018). 

Furthermore, there are several researches exploring CT within non-STEM disciplines, such as 

language lessons (Sabitzer et al., 2018) and music notation (Barate et al., 2017). Broader CT spectrum 

presents great opportunities but also challenges for educational researchers, primary and secondary 

level educators as well as computer science educators. To determine effective methods for teaching, 

learning and assessing CT, a definition of CT and its scope is needed. Moreover, the main 

components of CT need to be identified. 

To date, there is no consensus concerning the definition of computational thinking. In addition to 

different perspectives about the definition, there is even a disagreement about the importance of 
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achieving consensus. On the one hand, researchers are advocating the necessity of CT definition, like 

Selby and Woollard (2014), Werner et al. (2012) or Dong et al. (2019) who argue that "there is a need 

for a CT definition that teachers can effectively use to communicate CT to students in core classroom 

settings" (Dong et al., 2019, p.906). On the other hand, researchers argue that the focus should be on 

other aspects, such as how to include CT in classes, curriculums and how to observe the acquisition of 

CT. In this context, Aho argues that "any static definition of computational thinking likely would be 

obsolete 10 or 20 years from now" (National Research Council 2011, p.37). CT definitions are out of 

scope of this study. 

Apart from CT definition, researchers have begun to characterize computational thinking by means of 

CT taxonomies and frameworks, where particular concepts and practices were observed. Moreover, it 

is generally agreed that multiple skills are involved in CT. The main contribution of this paper is the 

identification of general, domain independent components of CT that will encourage further research 

towards consensus about general, domain independent components that forms CT. An additional 

contribution is related to unveiling the characteristics of relevant CT components with an emphases 

on computational, non-computational, cognitive and epistemological aspects of particular component. 

2. Related Work 
It is generally agreed that multiple skills are involved in CT. Wing (2008) addressed the significance 

of CT concepts as part of "fundamental questions: What are the elemental concepts of computational 

thinking?" (Wing, 2008, p.3270).  

However, there is still no consensus regarding the definitive or necessary components of CT. When 

computational thinking was reintroduced by Wing (2006), abstraction and decomposition were the 

fundamental components, while heuristic reasoning, problem reformulation, recursion and systematic 

testing were referenced as important cognitive processes for solving problems efficiently. The initial 

set of components were later refined with automation (Wing, 2008). After initial component 

conceptualization, researchers have begun to characterize computational thinking by means of CT 

taxonomies and frameworks, where particular concepts and practices were observed. Brennan and 

Resnick (2012) proposed a programming specific CT framework, where components were associated 

with programming specific concepts and artefacts. Weintrop et al. (2016) constructed a computational 

thinking taxonomy for mathematics and science. They "narrow the scope of computational thinking 

away from generalities, providing a sharper definition that is distinct from computer science". 

(Weintrop et al., 2016, p.128). Based on literature review, Shute et al. (2017) presented CT 

components that are "common among researchers". 

By examining the literature we found only two papers researching on achieving the consensus of the 

CT components. Barr et al. (2011) report on consensus that emerged regarding the essential elements 

of CT during the meeting of a diverse group of educators with an interest in CT from higher 

education, K-12 and industry. Rich and Langton (2016) used Delphi process to formalize CT 

definition, where CT components were also part of consensus goals. 

2.1. Terminology 
When addressing the multiple dimensionality of CT, researchers, educators and practitioners use the 

terminology interchangeably, not being consistent.  Brennan and Resnick (2012) propose a CT 

framework where components are classified into computational concepts, computational practices and 

computational perspectives. However, the proposed computational concepts are domain specific, 

because they address the programming constructs only, such as sequences, loops, conditionals. The 

computational practices category includes problem solving practices that occur in the process of 

programming, such as experimenting, iterating, abstracting and modularization. On the contrary, Barr 

and Stephenson (2011) propose the category of computational thinking concepts that includes 

abstraction, decomposition and automation, being general and domain independent dimensions. While 

reviewing literature, we found that authors use different terms when they address CT dimensions, 

such as skills, practices, components, concepts or abilities and that they are not consistent in their 

usage. We will be using the term "CT concept" when referring to theoretical, abstract, domain 

independent dimensions of CT, while the term "CT practice" will be used for domain specific, 

practical, tangible dimensions. Weintrop et al. (2016) report they moved from term "skill" to a broader 
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and more actionable term "practice based" on suggestions from many teachers from STEM 

disciplines. 

3. Literature review 
Although the purpose of this work was not a systematic literature review, we tried to follow the 

protocol defined by Kitchenham and Charters (2007) as much as possible. 

3.1. Scoping 
RQ1: What are the relevant theoretical, domain independent dimensions of CT? RQ2: What is the 

proportion of intendent usage of relevant CT dimensions in the literature?  

Answering RQ1 would enable us the examination of the widest possible scope of domain independent 

CT components. Additionally, the components with the highest number of occurrences could be 

selected as prime prospects for achieving the agreement about the definitive and necessary 

components of CT. Answering RQ2 would show the proportion of particular areas of interest and the 

scope of identified CT components within literature. 

3.2. Planning and identification 
To identify the broadest scope of CT aspects, we included the following terms as keywords for 

document screening and snowballing: CT components, CT skills, CT practices, CT dimensions, CT 

aspects and CT abilities.   

The first step in the creation of our initial corpus of relevant papers was the review of the existing CT 

literature with the aim to identify the broadest scope of CT aspects. Our investigation began by 

investigating four literature review papers. Inductive qualitative content analysis was conducted by 

Kalelioglu et al. (2016). They reviewed 125 papers researching on CT to provide a framework about 

the notion, scope and elements of CT. Hsu et al. (2018) conducted a meta-review of CT studies 

published in academic journals from 2006 to 2017. Based on the analyses of various educational CT 

aspects, mostly focusing on K-12 domain, they generated a list of 19 CT components while providing 

relevant references for each component. Systematic literature review was also conducted by 

Lockwood and Mooney (2018) to get an overview of the work that has been carried on in the 

secondary education. Moreover, their objective was to identify potential gaps and opportunities that 

might still exist in the scope of CT education. Their literature review has identified 58 papers referring 

to CT definitions, course design, teaching methodology or assessing CT. Sondakh (2017) published a 

paper that provided the insight of CT in higher education, particularly focusing on assessing CT skills. 

She identified 22 relevant CT skills within 16 papers. It should be noted that the papers were selected 

with the intent to include the widest possible educational spectrum. Based on the detailed review of 

the four aforementioned literature reviews, our initial corpus of 135 relevant papers was ready for 

screening. 

3.3. Inclusion criteria and paper screening 
The inclusion criteria had to support the main purpose of this study that is to identify basic, domain 

independent dimensions of CT. After screening summary, introduction and discussion sections of 

each paper from the corpus of the initial 135 papers, the paper was included for CT concept analysis 

only if it was a CT definition proposal, CT taxonomy proposal or CT assessment. Moreover, the 

papers that applied the existing conceptual taxonomy to a specific domain or the papers that proposed 

a new conceptual taxonomy based on existing CT definition or existing CT taxonomy, were also 

included. In the second phase, CT concept analysis was performed to build a final paper corpus. Only 

papers that advocated conceptual dimensions were selected into final corpus. During the process, we 

also identified papers that built a conceptual taxonomy first that was later implemented within 

programming domain, where conceptual dimensions were translated to specific programming 

constructs. They were also included in the final corpus. A large number of papers were building on 

CT taxonomies specific to programming domain, but were not included in the final corpus. Among 

which, Brennan and Resnick (2012) was the most referenced paper. At the end of this process twenty-

eight papers have been included in the final corpus. 
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4. Results 
This section presents the results of the analysis of 28 papers that were included in the final corpus.  

RQ1: What are the relevant theoretical, domain independent dimensions of CT? 

The aim was to discover the widest possible range of general, domain independent CT concepts. 

Thirty-six distinct CT concepts were identified, with frequencies ranging from 23 to 1. CT concepts 

with the highest frequencies are presented in Table 1. Relevant CT dimensions are presented in CT 

Concept column, number of occurrences for each dimension is presented in Frequency column. The 

Reference column presents the list of papers where the particular dimension has been identified. It 

should be noted that different reference format is used to list the papers in the Reference column for 

greater legibility. The most common concepts are underlined: abstraction and algorithm. 

As presented in Table 1, the abstraction concept and the algorithm concept have 23 occurrences 

within the literature. However, as can be observed from the reference column in Table 1, they were 

not identified within the same papers. The frequencies of other identified concepts are much lower 

than abstraction and algorithm. 

CT Concept Frequency Reference 

Abstraction 
23 

[3] [7] [9] [10] [15] [18] [22] [23] [27] [28] [33] [34] [38] 

[63] [64] [66] [70] [73] [74] [82] [83] [84] [90] 

Algorithm 
23 

[3] [7] [9] [10] [13] [15] [18] [22] [23] [27] [28] [34] [38] 

[45] [49] [63] [64] [66] [70] [73] [74] [82] [90] 

Decomposition 

14 

 

[3] [7] [18] [22] [23] [28] [38] [64] [66] [70] [73] [74] [82] 

[90] 

Data representation 11 [7] [10] [13] [15] [27] [28] [66] [69] [73] [84] [90] 

Modeling 9 [13] [15] [27] [28] [33] [34] [51] [69] [84] 

Evaluation 8 [3] [13] [18] [27] [64] [69] [74] [82] 

Generalization 8 [3] [18] [27] [28] [34] [64] [74] [90] 

Table 1 – Identified CT concepts 

For a better visualization of the frequency of CT concepts, Figure 1 shows a word cloud of all 36 

distinct CT concepts. 

 

Figure 1 – Word cloud of identified CT concepts 

As can be observed from Figure 1, the algorithm concept and the abstraction concept are of the same, 

maximum size, while other identified concepts are smaller, according to their frequency of 

occurrence. Due to space limit, concepts with only one occurrence, such as Systematic analysis, 

Cooperation, Concretization, Collaboration, Information processing, Playfulness, Literacy, 

Computational Vocabulary, Linguistics, Scalability, Planning and Efficiency have reduced visibility.  

RQ2: What is the proportion of intendent usage of relevant CT dimensions in the literature? 
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Table 2 presents the frequency of intendent usage of relevant CT dimensions identified in the 

literature. The most common identified purpose was CT definition, followed by CT assessment and 

CT taxonomy. 

Intendent usage Frequency Reference 

Definition 13 [7] [9] [10] [15] [18] [28] [33] [34] [49] [51] [70] [74] [82] 

Assessment 10 [3] [13] [22] [27] [45] [63] [66] [69] [83] [90] 

Taxonomy 5 [23] [38] [64] [73] [84] 

Table 2 – Intendent usage of CT dimensions 

5. Relevant computational thinking concepts 
In this section we present the characteristics of relevant computational thinking concepts that were 

identified within our study. The concepts and their frequencies were presented in Table 1. Frequencies 

and paper references of intendent usage are presented at the end of description of each CT concept. 

However, this is by no means an exhaustive literature review of particular concepts, but rather an 

overview of their characteristics, scope and usage.  

5.1. Abstraction 
Abstraction can generally be characterized as the conceptual process of eliminating specificity by 

ignoring certain features. From a human ability perspective, abstraction is comprised of two 

complementary concepts: removing details to build simplification and deriving generalizations to 

illuminate essentials. Abstraction has been the focus of many studies within various disciplines, such 

as philosophy, psychology, cognitive science, mathematics and computer science. Whistler (2016) 

cites prominent philosophers who were debating how a reason evolves as an abstraction of thought. 

Abstract thinking was defined as the ability "to realistically imagine a problem and a solution" by 

developmental psychologist Piaget (1950). Piaget argued that children develop the ability to think 

abstractly, systematically and hypothetically as part of their last stage of cognitive development. 

Kramer (2007) asserted that abstraction is "fundamental to mathematics and engineering in general, 

playing a critical part in the production of models for analysis and in the production of sound 

engineering solutions" (Kramer, 2007, p.40). Frorer et al. (1997) addressed the complexity and 

various faces of abstraction in mathematics. Moreover, diSessa (2018) interprets mathematics as a 

"queen of abstract sciences". diSessa clarifies distinction between the mathematical (inferential) 

abstraction, abstraction in physic (empirical abstraction) and abstraction in computer science 

(practical abstraction). diSessa advocates that the skill of "peeling away" irrelevant particulars is not 

needed within the mathematical abstraction. This claim is further supported by Colburn and Shute 

(2007) who advocate that abstraction in "computer science is to be sharply distinguished with 

abstraction within mathematics". Abstraction is closely related to the modeling concept and the 

concept of generalization. The model is abstraction of a real or a conceptual complex system. 

Empirical sciences are normally concerned with two kinds of models: concrete models in the form of 

experimental apparatus and abstract model in the form of mathematics. The model is designed to 

expose significant features and characteristics of the system that is intended for the study, for the 

prediction or for the modification. Thus, a particular model represents only some of the many aspects 

of the complex system that could potentially be modeled. Namely, the aspects and the complexity of 

the particular model depend on the relevant level of abstraction that was employed by the model 

developer. Prusinkiewicz (1998) discusses the relevancy of abstraction levels in natural sciences. 

Moreover, Nielsen (2018) addresses the right degree of abstraction in the context of scientific 

knowledge and scientific abstraction. Nielsen argues that abstraction is equally as important as the 

scientific method, although it is relatively neglected in the science itself and in contemporary 

analytical philosophy of science. Computer science relates to various entities characterized as abstract 

or various activities characterized as abstraction, such as abstract data types, data abstraction, 

procedural and control abstraction. Lowe and Brophy (2017) claim that abstraction in computer 

science has taken on two different usages: the first use of abstraction relates to inheritance and uses 

the fewer details as an extension point for future functionality, while the other common use of 

abstraction is to hide away the details which are not required to understand a greater concept. The 

latter one is often conceptualized as encapsulation. This is further supported by Colburn and Shute 
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(2007) who advocate that information hiding is the primary objective of abstraction in computer 

science practices, such as programming languages, operating systems, network architecture, and 

design patterns. Within software engineering, abstraction involves the extraction of properties of an 

object according to some focus: only those properties are selected which are relevant with respect to 

the focus (Czarnecki, 1988). Michaelson (2017) presents several examples of programming practices 

concerning abstraction, such as the procedural abstraction, the functional abstraction and abstractions 

within arrays and recursion. Moreover, Michaelson links these programming practices with CT 

concepts. According to Wing (2011), abstraction process is "the most important and high-level 

thought process in computational thinking". Additionally, abstraction "is used to let one object stand 

for many. It is used to capture essential properties common to a set of objects while hiding irrelevant 

distinctions among them" (Wing, 2011). In the context of CT, layers of abstraction allows a problem 

solver to focus on one layer at the time, to define each layer and to illuminate relationships between 

layers (Wing, 2008). Furthermore, Csizmadia et al. (2015) define abstraction in the context of CT as 

the process of making an artefact more understandable through reducing the unnecessary detail. The 

core practice in CT abstraction is in choosing the right detail to hide that the problem becomes easier, 

without losing anything that is important. A key part is in choosing a good representation of the 

system. Different representations make different things easy to do (Csizmadia et al., 2015). Selby and 

Woollard (2014) cite various authors that observe abstraction in the context of developing the CT 

definition. Based on the literature review, they advocate that abstraction is the core concept that 

should be included in CT. Results of our analysis show 11 occurrences  in CT definition category ([7] 

[9] [10] [15] [18] [28] [33] [34] [70] [74] [82]), 5 occurrences in CT taxonomy category ([23] [38] 

[64] [73] [84]) and 7 occurrences in CT assessment category ([9] [22] [27] [63] [66] [83] [90]). 

5.2. Algorithms 
We define algorithms as procedural building blocks of a computer programming, of a human thought 

and of a general problem solving. The purpose of this generalized definition is to manifest the multi-

dimensionality of an algorithm concept. Within programming, algorithms are predefined procedures 

that are encoded with programming artefacts to incorporate sequencing, branching and looping. In the 

theoretical computer science, an algorithm is defined as a procedure that satisfies the criteria of 

finiteness, input, output, effectiveness, and definiteness (Knuth, 1997). In this context, algorithms are 

effectuated with formally defined (programming) languages, where statements are rigorously 

unambiguous. The aim is that such an algorithm becomes a machine executable artefact, characterized 

by Denning (2017) as "not any sequence of steps, but a series of steps that control some abstract 

machine or computational model without requiring human judgment" (Denning, 2017, p.33). Finally, 

Aho (2011) provides a definition of an algorithm in the context of Turing computability theory, 

stating that "The Turing machine provides a precise definition for the term algorithm: an algorithm for 

a function f is just a Turing machine that computes f." (Aho, 2011, p.5). Mathematical algorithm is a 

computational procedure, a set of steps that takes an input, perform a finite number of allowed 

operations and produces an output. Among all the definitions of algorithms within mathematics, we 

emphasize the definition introduced by Fetzer (2001) that cites Kleene (1967), who defines algorithms 

as "effective procedures, which are rules or methods whose application to a problem within an 

appropriate domain leads invariably to a definite solution within a finite number of steps". Generally, 

the algorithmic nature of mathematics can be observed through proving many theorems that provide a 

finite procedure to answer a question or to calculate something (Basu et al., 2006). Algorithms are of 

great interest to many philosophers that advocate the relation of algorithms to cognition (Hill, 2015). 

In the philosophy of mind, the mental algorithm is a fragment in the computational theory of mind 

that treats human mind as information processing system. Fetzer (2001) cites prominent cognitive 

scientists and philosophers while he observes the concept of mental algorithm within computational 

and non-computational conception. Moreover, computational theory of mind is the foundation for 

cognitive theory proposed by Marr (2010), where cognitive processes consist of three layers: 

computational (semantic) level, algorithmic (syntax) level and implementational (physical) level. The 

algorithm design skills and effective usage of algorithms are fundamental practices in algorithmic 

problem solving. In educational context, these practices are advocated as algorithmic thinking. Knuth 

(1985) observed the concept of algorithmic thinking in mathematics, while Fustschek (2006) 

associates algorithmic thinking as one of the most important competencies that can be acquired by 
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learning informatics. Fustschek further defines algorithmic thinking as a pool of abilities that are 

concerned with the ability to analyze the given problems, the ability to specify a problem precisely, 

the ability to construct the correct algorithm, the ability to think about all possible circumstances to a 

given problem and the ability to improve the efficiency of an algorithm. Moreover, Fustschek 

advocates a strong creative aspect of the algorithmic thinking associated with the construction of new 

algorithms that solve new problems. In the context of CT, algorithmic thinking is concerned with 

getting to a solution through a clear definition of steps. It is the ability to think in terms of sequences 

and rules as a way of problem solving or understanding situations (Csizmadia et al., 2015). CT is 

associated with algorithmic thinking, pattern recognition and generalization in solving problems when 

repeatable patterns can be observed. According to our analysis, algorithms have 11 occurrences in CT 

definition category ([7] [9] [10] [15] [18] [28] [34] [49] [63] [70] [74]), 4 occurrences in CT 

taxonomy category ([23] [38] [64] [73]) and 8 occurrences in CT assessment category ([3] [13] [22] 

[27] [45] [63] [66] [90]). 

5.3. Decomposition 
Decomposition deals with breaking down a problem into smaller, more manageable components 

where each component can be managed independently. Problem decomposition practice exists in 

general scientific domain. Decomposition was advocated by Polya (1957) within mathematics as a 

part of his problem solving techniques called heuristics. Examples are to be found in the physics, 

where objects are decomposed into entities of hierarchy, like molecules, atoms and subatomic 

particles. In discrete mathematics, modular decomposition is a technique in several domains of 

combinatorics, such as the graphs and hypergraphs (Habib and Paul, 2010). In computer science, 

distinct variants of decomposition can be observed. Parnas (1972) investigated hierarchical 

decomposition in the context of modularity in order to decompose complex information system into a 

number of smaller, manageable modules. Moreover, decomposition is the crucial part of structured, 

object-oriented and functional programming paradigms. In terms of CT, Wing (2008) linked 

abstraction layers with hierarchical decomposition. Barr and Stephhenson (2011) argue that 

decomposition is about breaking problems down into smaller parts that may be more easily solved. 

Decomposition is a way of thinking about problems, algorithms, artefacts, processes and systems in 

terms of their parts. These parts can then be understood, solved, developed and evaluated separately. 

This makes complex problems easier to solve and large systems easier to design (Curzon et al., 2014). 

Results of our analysis show there are 6 occurrences in CT definition category ([7] [18] [28] [70] [74] 

[82]), 4 occurrences in CT taxonomy category ([23] [38] [64] [73]) and 4 occurrences in CT 

assessment category ([3] [22] [66] [90]). 

5.4. Data management 
Data collection, data analysis and data representation are important aspects of the scientific research. 

However, in the context of CT, data is supporting computational thinking process by providing 

important information in the means of finding a data source, analyzing the data or using the data 

structures to represent data, such as graphs, charts, words or images (Conery et al., 2011). In our 

analysis, data representation concept has 4 occurrences in CT definition category ([7] [10] [15] [28]), 

2 occurrences in CT taxonomy category ([73] [84]) and 5 occurrences in CT assessment category 

([13] [27] [66] [69] [90]). 

5.5 Modeling 
Modeling is a core practice in science and a central part of scientific literacy. Schwarz et al. (2009) 

define scientific model as a representation that abstracts and simplifies a system by focusing on key 

features to explain and predict scientific phenomena. Working with scientific models involves 

constructing and using models, as well as evaluating and revising them. The development of 

sufficiently useful models typically requires a series of iterative "modeling cycles" where results of 

constructions and explanations activities are tested and revised repeatedly (Lesh and Harel, 2003). 

Modeling is particularly important in mathematics and engineering. Mathematical models are distinct 

from other categories of models mainly because they focus on structural characteristics of systems 

they describe, while models in physics, biology, or arts do not build upon the structural characteristics 

(Lesh and Harel, 2003). Kramer (2007) argues that modeling is the most important engineering 

technique, as models assist engineers to understand and analyze large and complex systems. Within 
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computing, modeling is an important and common form of representing different areas and levels of 

informatics and software engineering. In the theoretical computer science Aho (2011) defines a model 

of computation as "mathematical abstraction of a computing system" (Aho, 2011, p.4). Furthermore, 

he emphasizes Turing machine as the most important model of sequential computation. However, 

modeling within computing might not be confused with computational modeling, which is the use of 

computers to simulate and study the behavior of complex systems using mathematics and 

computational science. Computational modeling can be applied to any scientific domain, particularly 

in empirical sciences, such as physics, neurobiology, psychology and cognitive science (Stacewicz 

and Wlodarczyk, 2010). Sabitzer and Pasterk (2015) observed modeling in the context of education, 

where competencies needed for the modeling process like abstraction, reduction, simplification, 

classification and generalization should be part of general education covering children of all ages. 

STEM educational researchers at K-12 level (Weintrop et al., 2016) have proposed CT taxonomy for 

mathematics and science, where, among other CT concepts, modeling and simulation concept is 

defined as designing, constructing, using and assessing computational models. According to our 

analysis, modeling concept has 5 occurrences in CT definition category ([15] [28] [33] [34] [51]), 1 

occurrence in CT taxonomy category ([84]) and 3 occurrences in CT assessment category ([13] [27] 

[69]). 

5.6. Evaluation 
Evaluation generally refers to the process of determining the worth, merit or value of the subject that 

is exposed to evaluation – evaluand. The evaluation process normally involves some identification of 

relevant standards of worth, merit or value. Moreover, the process is also concerned with some 

investigation of the performance of the evaluands on these standards (Shaw et al., 2013). Distinction 

should be concerned between the term "assessment" and the term "evaluation" within educational 

domain. Sultana (2016) defines evaluation as the process for determining the success level of an 

individual based on data, while assessment is defined as the procedures or techniques used to collect 

the aforementioned data. In the context of CT, Curzon et al. (2014) propose evaluation as the process 

of ensuring an algorithmic solution is a good one: that it fits for purpose. Various algorithmic 

properties need to be evaluated including correctness, speed, whether they are economic in the use of 

resources and whether they are easy for people to use and to promote. There is a specific and often 

extreme focus on attention to detail in computational thinking based evaluation (Curzon et al., 2014). 

In our analysis, evaluation concept has 3 occurrences in CT definition category ([18] [74] [82]), 1 

occurrence in CT taxonomy category ([64]) and 4 occurrences in CT assessment category ([3] [13] 

[27] [69]). 

5.7. Generalization 
Generalization can be observed from different aspects. In psychology, generalization is described as 

"the occurrence of relevant behavior under different, non-training conditions" (Stokes and Baer, 1977, 

p.350). From educational point of view, generalization is one of the fundamental activities in teaching 

and learning of mathematics (Hashemi et al., 2013). In software engineering, generalization is a 

crucial practice in object oriented programming, where generalization is the act of capturing 

similarities between classes and defining the similarities in a new, generalized class, called superclass. 

The ability to generalize and to abstract is an important concept in problem solving. Kamarudin et al. 

(2016) argue that generalization and abstraction provide more freedom in the construction of an idea 

than using a specific problem solving approach. Both concepts enable designers to initiate early 

moves in generating various ideas for problem solving. Within CT, generalization is associated with 

identifying patterns, similarities and connections. It is a way to quickly solve new problems based on 

previous solutions to problems, and a way of building on prior experience (Csizmadia et al., 2015). 

Selby and Woollard (2014) identify generalization as one of the most frequently occurring terms in 

CT literature. Moreover, they argued that generalization is used sparingly in the CT literature, but the 

idea of recognizing and reusing common parts of a solution or process is appropriate for inclusion in a 

definition of computational thinking. According to our analysis, generalization concept has 4 

occurrences in CT definition category ([18] [28] [34] [74]), 1 occurrence in CT taxonomy category 

([64]) and 3 occurrences in CT assessment category ([3] [27] [90]). 
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6. Discussion 
The objective of this paper was to identify a basic set of domain independent dimensions of CT that 

researchers would agree upon. To date there is no consensus regarding the definitive or necessary 

components that would form the basic foundation of agreed CT concepts. According to the results 

presented in Table 1, abstraction and algorithms appear to be the prime prospects to build on 

consensus. 

Results of our analysis in Table 1 are aligned with findings from previous works. Selby and Woolard 

(2014) conducted a research to identify a definition and a description of the core elements of CT. 

Based on the analysis, a consensus was found in the literature regarding abstraction concept and 

decomposition concept. Although consensus was not proposed for algorithmic design, the concept 

was found to be well defined across multiple disciplines and was included within CT definition. 

Araujo et al. (2016) found that algorithm and abstraction are the most commonly assessed CT skills. 

Lowe and Brophy (2017) argue that algorithms may be the most agreed CT concept across literature. 

Barr et al. (2011) report on consensus that emerged regarding the essential elements of CT during the 

meeting of a diverse group of educators with interest in CT from higher education, K-12 and industry. 

More than 82% of 697 respondents agreed or strongly agreed upon the essential elements of CT, 

where abstraction and algorithmic thinking were recognized as the essential concepts. Nevertheless, 

two literature review papers that were selected as the primary source of our study reveal comparably: 

Kalelioglu (2016) advocates that abstraction and algorithmic thinking are mostly used words in CT 

scope. Sondakh (2017) reports that abstraction and algorithms are the most commonly assessed CT 

concepts in higher education. 

Results from Table 2 reveal that the main research focus is on defining and assessing CT skills and 

practices. This is aligned with the findings from Roman-Gonzalez et al. (2016) who claim that there is 

no consensus on formal definition of CT nor does a consensus exist concerning how to effectively 

measure CT, although both aspects are in the main focus of recent research. 

To line up with general, domain independent CT concepts, papers that were addressing domain 

specific CT skills or practices were excluded from analysis. This is particularly true for programming, 

while the majority of identified papers were using taxonomies where components were associated 

with programming specific concepts and artefacts. However, the results from our study can be applied 

to any domain, including programming.  

To expand upon our study, teaching and assessing CT should include abstraction and algorithms. In 

this context, how should an instrument for assessing these practices look like? According to findings 

from our study, it depends on the domain that would be the subject of the research. If the aim would 

be to assess the algorithmic abilities of introductory computer science students or the algorithmic 

abilities of a software engineer, the instrument should be constructed as conceptual intervention 

within pseudocode or as Parson problem design, in both cases with an emphasis on algorithms. On the 

other hand, if the aim would be to assess the algorithmic abilities of a primary school aged child, the 

instrument should be constructed as CS Unplugged task focusing on sorting and searching. 

7. Future work 
Further research is needed towards the consensus from necessary to definitive set of domain 

independent components that define CT. A Delphi study appears to be a proper starting point for this 

task. The purpose of the Delphi study is to "obtain the most reliable consensus of opinion of a group 

of experts" using surveys and questionnaires (Linstone and Turoff, 2002, p.10). To our best 

knowledge, there were two Delphi studies conducted in the context of CT: Kolodziej (2017) 

conducted the Delphi study in order to formally define higher education curriculum, while Rich and 

Langton (2016) used Delphi process to formalize CT definition. Rich and Logan included only 

programming specific CT practices, therefore their result is not relevant in domain independent 

context. 

The results of our study support previous findings concerning the complex, multidimensional nature 

of computational thinking. The proficiency of a child, a student or a professional within CT shows 

signs of being more complex than a simple aggregation of his or her proficiency within particular CT 
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concept, such as abstraction or algorithms. In this context, further research is required to identify and 

evaluate significance of particular CT dimension within general problem solving proficiency of an 

individual. Several evaluation rubrics already exist in domain specific CT assessments, such as Dr. 

Scratch (Moreno-Leon et al., 2015), which is aimed to evaluate programming proficiency within the 

Scratch projects. Although the metric used by Dr. Scratch has been a subject of several evaluations 

Moreno-Leon et al. (2017) and Browning (2017), the utilized metrics treats each CT practice with 

equal significance. Thus, abstraction practice is equally important as the data representation practice. 

Moreover, the competencies level for "abstraction and decomposition" within Dr. Scratch should be 

evaluated with respect to theoretical computer science (Turner, 2018, p.149). From this perspective, 

competence level "definition of blocks" (Moreno-Leon et al., 2015, p.6) shows signs of being pure 

problem decomposition, or at least modularization and problem decomposition rather than abstraction 

and problem decomposition. 

The role of problem solving competency requires further investigation in context of CT. On the one 

hand, results of our study identified problem solving as a domain independent CT component with 7 

occurrences in the literature. On the other hand, Barr and Stephenson (2011) characterize CT as a 

distinct problem solving process that incorporates several CT components as well as several non-

cognitive competencies, such as confidence and persistence.  

Last but not least, the results of our study also addressed challenges regarding teaching and assessing 

aspects of CT. There appears to be a consensus among the computer science researchers and 

educators concerning the multidimensional structure of CT. As a consequence, learning abstraction, 

algorithms or decomposition stimulates proficiency level of CT. Moreover, as advocated by Roman-

Gonzalez et al. (2017, p.154) "CT assessment is an extremely relevant and urgent topic to address", 

researchers should focus on assessing particular dimensions of CT. Finally, our investigation on 

relevant CT concepts revealed the "multi face" structure of particular CT concepts: the treatment of 

abstraction and algorithms is not exactly the same within mathematics, computer science or within 

cognitive sciences. As CT is positioned as the umbrella of these "multi faced" concepts, further 

research is needed on possible "multi face" structure of computational thinking itself. 
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