
Proceedings of the
31st Annual Workshop

of the
Psychology of Programming Interest Group

(PPIG 2020)

Summer Edition: 17-21 August,
Winter Edition: 1-4 December,

online

Edited by
Mariana Marasoiu, Colin Clark, Philip Tchernavskij, Ben Shapiro, Clayton Lewis and Luke Church

Editors’ note

Due to be hosted for the first time in North America, at OCAD University's Inclusive Design Research
Centre in Toronto, Canada, the year’s theme was Cultivating the Margins.

However, as with many other conferences needing to adjust to the new circumstances of the COVID-19
pandemic, PPIG 2020 went online as well.

At the core of the PPIG annual workshops is the fostering of a community of people interested in all aspects
of programming. We aimed to maintain and support these goals in the transition to the online setup as well.

The single event initially planned for July was replaced with two one-week-long virtual events in August
(17th to 21st) and December (1st to 4th). During each of the weeks, we met for two to three hours a day for
presentations, discussions, panels, and social activities.

The organisers wish to thank all who participated and made both editions of PPIG 2020 such a success!

Mariana Marasoiu, University of Cambridge
Colin Clark, OCAD University
Philip Tchernavskij, OCAD University
Ben Shapiro, Apple Inc. and University of Colorado Boulder
Clayton Lewis, University of Colorado Boulder
Luke Church, University of Cambridge

PPIG 2020 2 www.ppig.org

PPIG 2020 Call for Papers - Cultivating the Margins

The speed, growth, and increasing entanglement of computational systems is actively changing our work,
social, political, and creative lives. Yet the apparent success of these systems in reshaping social and
economic landscapes has also come with enormous costs—putting fair and stable employment, the veracity
of information, respectful use of data, and democratic participation at risk. Perhaps the ways we create and
study these systems, and the normative assumptions and values that are embedded within them, need to be
reconsidered in a new light?

This critique has been present at PPIG for a while, from End User Programming, Live Coding, to even the
idea of studying the psychology of programmers. We’ve always been a community that invites other
perspectives on what it means to program, and we want to continue to extend this interest.

This year’s theme prompts us to reflect upon what we’re missing—the practices, theories, people, and
technologies that have been excluded, set aside, or overlooked by mainstream programming research. What
are the edges and limits of programming and programmed systems? Who has agency to participate in their
creation and study, and who is relegated to the passive role of user or research subject?

What new or overlooked possibilities are growing at the margins of programming, away from the prevailing
industrial and technoscientific values of speed, efficiency, measurability, and scale? What would an ecology
of programming look like, in which we have a responsibility to cultivate communities, invite diverse
perspectives, and grow a plurality of approaches and epistemologies?

The Psychology of Programming Interest Group (PPIG) was established in 1987 in order to bring together
people from diverse communities to explore common interests in the psychological aspects of programming
and in the computational aspects of psychology. “Programming”, here, is interpreted in the broadest sense to
include any aspect of software creation. As always with PPIG, we accept the widest range of submissions on
a variety of topics, such as:

● Programming and human cognition
● Programming education and craft skill acquisition
● Human centered design and evaluation of programming languages, tools and infrastructure
● Team/co-operative work in programming
● End user programming
● Distributed programming, programming distribution
● Gender, age, culture and programming
● New paradigms in programming
● Code quality, readability, productivity and re-use
● Mistakes, bugs and errors
● Notational design
● Unconventional interactions and quasi-programming
● Non-human programming
● Technology support for creativity
● Music(al) programming
● Liveness and interactivity in programming

PPIG 2020 3 www.ppig.org

PPIG 2020 Programme & Proceedings Index

Summer Edition, 17-21 August

(timings are given in British Summer Time / UTC+1)

Monday, 17 August

Tuesday, 18 August

Wednesday, 19 August

16:00 - 16:30 Welcome to PPIG!

16:30 - 18:00 Icebreaker & getting to know each other

16:00 - 18:00 Panel discussion: Programming, Communities & Creative Power

Invited speakers:
Alan Blackwell and Jason Lewis, software for indigenous communities
Clemens Klokmose, Midas Nouwens, nanoscience
Clayton Lewis, home automation as support for people with disabilities
Colin Clark and Michelle D’Souza, platform cooperatives
Philip Tchernavskij, software for citizen natural science

18:00 - 19:00 Sightseeing - StreetView tour of Toronto

16:00 - 17:00 Paper presentations

Parallel Program Comprehension
Eric Aubanel

8

What the Mouse Said: How mouse movements can relate to student stress
and success
Natalie Culligan and Kevin Casey

17

Designing an Open Visual Workflow Environment
Charles Boisvert, Chris Roast and Elizabeth Uruchurtu

26

17:00 - 18:00 Roundtable discussion: Reflections on Programming Otherwise

18:00 - 19:00 Musical Soirée (or Matinée, depending on your location!)

PPIG 2020 4 www.ppig.org

Thursday, 20 August

Friday, 21 August

16:00 - 17:00 Paper presentations

Assessing a candidate's natural disposition for a software development
role using MBTI
Daniel Varona and Luiz Fernando Capretz

32

On personality testing and software engineering
Clayton Lewis

39

17:00 - 18:00 Panel discussion: Friendly editors

Invited speakers:
Sarah Chasins
Cyrus Omar
Titus Barik

18:00 - 19:00 Conference reception - make and bring your own dish!

16:00 - 16:45 Doctoral Consortium short talks

Validation of Stimuli for Studying Mental Representations Formed by
Parallel Programmers During Parallel Program Comprehension
Leah Bidlake, Eric Aubanel and Daniel Voyer

42

Purpose-First Programming: Scaffolding program writing and
understanding to align with purpose-oriented identities
Kathryn Cunningham

45

16:45 - 17:45 Panel discussion: Between science and software engineering

Invited speakers:
Ross Church
Chris Martin

17:45 - 18:30 PPIG Prizes & Close

PPIG 2020 5 www.ppig.org

Winter Edition, 1- 4 December

(timings are given in British Standard Time / UTC)

Tuesday, 1st December

Wednesday, 2nd December

16:00 - 16:30 Welcome to PPIG!

16:30 - 17:30 Paper presentations:

An Analysis of Student Preferences for Inverted vs Traditional Lecture
Brian Harrington, Mohamed Moustafa, Jingyiran Li, Marzieh Ahmadzadeh and
Nick Cheng

47

Exploring the Coding Behavior of Successful Students in Programming by
Employing Neo-Piagetian Theory
Natalie Culligan and Kevin Casey

57

Developing Testing-First Labs For a Less Intimidating Introductory CS
Experience
Brian Harrington and Angela Zavaleta Bernuy

66

17:30 - 17:50 Doctoral Consortium presentation

A principled approach to the development of drum improvisation skills
through interaction with a conversational agent
Noam Lederman

75

18:00 - 19:00 Virtual Guided Tour

16:00 - 16:20 Doctoral Consortium presentation

Programming “systems” deserve a theory too
Joel Jakubovic

78

16:20 - 18:00 Panel discussion: Digressions on expression

Invited speakers:
Steven Githens
Willie Payne
Lee Tusman
Sepideh Shahi
Tony Atkins

18:00 - 19:00 Musical Soirée (or Matinée, depending on your location!)

PPIG 2020 6 www.ppig.org

Thursday, 3rd December

Friday, 4th December

16:00 - 16:40 Paper presentations:

Understanding the Problem of API Usability and Correctness Misalignment
Tao Dong and Elizabeth Churchill

82

Integrating a Live Programming Role into Games
Steve Tanimoto and Krish Jain

108

16:40 - 18:00 Board game play session

Undecided? - A board game to study intertemporal choices in software
project management
Christoph Becker, Tara Tsang, Rachel Booth, Enning Zhang and Fabian
Fagerholm

122

18:00 (optional: continued game play)

16:00 - 16:40 Paper discussion

Undecided? - A board game to study intertemporal choices in software
project management
Christoph Becker, Tara Tsang, Rachel Booth, Enning Zhang and Fabian
Fagerholm

122

16:40 - 17:40 Breakout groups discussion: On computing and communities

17:40 - 18:00 PPIG Prizes & Close

PPIG 2020 7 www.ppig.org

Parallel Program Comprehension

Eric Aubanel
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick

Canada, E3B 5A3
aubanel@unb.ca

Abstract
Parallel programming keeps growing in importance, driven both by changes in hardware and the increas-
ing size of data sets. Hundreds of parallel languages have been proposed, but very few have taken hold
beyond the language developers themselves. One reason for this is usability - that is the degree of ease
with which one can develop and maintain parallel programs that are both correct and reach the desired
level of performance. The few studies of parallel language usability have not been informed by a theoret-
ical framework. Existing theoretical models of program comprehension need to be extended to parallel
programming to help address the challenges of developing new languages, programming frameworks,
development tools, and pedagogy. The contribution of this article is to motivate research on parallel pro-
gram comprehension, and to suggest a way forward by expanding the two-level program/situation model
of program comprehension to include a model of program execution and by applying the extensive work
on human reasoning by Johnson-Laird to understand how people reason about parallel programs.

1. Introduction
The cognitive psychology of computer programming has been well studied since the 1970’s, and has
led to deep insight into how programmers design, build and understand software (Détienne, 2001). This
knowledge is vital for the development of software engineering tools and techniques, for the design of
programming languages, and for computer science education. Program comprehension is relevant to
many programming tasks. When implementing a design, programmers need to read and assess what
they have written. Design also frequently involves reuse, which requires comprehension of the code
to be reused. Other programming tasks require program comprehension, such as modification to add
features, improve performance or software quality, and of course debugging. In order to comprehend a
program, a programmer constructs a mental representation based on the program text and the program-
mer’s knowledge (Détienne, 2001).

Theories about the mental representation of computer programs have informed the research and de-
velopment of software engineering tools (Storey, 2006). Existing theoretical models of program com-
prehension include knowledge stored in long term memory (language syntax and semantics, program-
ming schemas) and the development of mental models of programs in working memory. These compo-
nents were brought together in von Mayrhauser and Vans’s Integrated Code Comprehension Metamodel
(1994).

The mental model theories of program comprehension are based on theories of natural language text
comprehension (Détienne, 2001). One important question is whether a text is represented mentally by
its propositional structure or by its meaning. Johnson-Laird has made a strong case that it is the meaning
that is represented, in the form of mental models (P. N. Johnson-Laird, 1983). For computer program
comprehension the propositional structure is referred to as the program model and the meaning is repre-
sented by the situation model. This two-part model has been successfully applied to the comprehension
of procedural and object-oriented programs (Détienne, 2001), but has not been studied for parallel pro-
grams. Understanding a parallel program requires additional work, such as reasoning about multiple
streams of execution and awareness of execution at the machine level.

Parallel programming keeps growing in importance, driven both by changes in hardware and the in-
creasing size of data sets (Asanovic et al., 2006). Hundreds of parallel languages have been proposed,

PPIG 2020 8 www.ppig.org

but very few have taken hold beyond the language developers themselves. One reason for this is us-
ability - that is the degree of ease with which one can develop and maintain parallel programs that are
both correct and reach the desired level of performance. The few studies of parallel language usability
have not been informed by a theoretical framework (Mattson & Wrinn, 2008). Sadowski and Shew-
maker’s (2010) survey found that the existing literature on usability of parallel programming languages
was inconclusive and that there were significant challenges in measuring usability.

The existing theoretical models of program comprehension need to be extended to parallel programming
to help address the challenges of developing new languages, programming frameworks, development
tools, and pedagogy. The contribution of this article is to motivate research on parallel program com-
prehension, and to suggest a way forward by expanding the two-level model of program comprehension
to include a model of program execution and by applying the extensive work on human reasoning by
Johnson-Laird to reasoning about parallel programs.

Sections 2-4 review three types of mental models. Section 2 reviews the mental model theory of pro-
gram comprehension, and concludes with an illustrative example to discuss the extra work required in
parallel program comprehension and introduce the idea of an execution model. Section 3 discusses the
importance of machine models in parallel programming, and how they are related to the concept of
notional machines. Section 4 briefly presents Johnson-Laird’s understanding of human reasoning with
mental models. Finally, Section 5 presents a proposal for an execution model component of program
comprehension and how it might be used in reasoning about parallel programs.

2. Mental Models in Comprehension of Computer Programs
The experimental study of computer program comprehension dates back to the early ’80s (Bidlake,
Aubanel, & Voyer, 2020). Détienne provides a thorough analysis of work up until the late ’90s in her
book Software Design – Cognitive Aspects (2001). She classifies work on program comprehension
into approaches that use schemas, representing domain and programming knowledge, problem solving
approaches, and the mental model approach. According to Détienne (2001, ch. 6), "It appears that
the mental model approach is the one that explains most completely the processes employed and the
representations constructed in the course of understanding a program."

The mental model approach began with work by Pennington (1987). Pennington’s experiments revealed
that programmers construct a program model using control flow structures, when reading a program
for the purpose of comprehension. When the comprehension stage is followed by a modification stage,
which requires comprehension of the meaning of the program, a situation model is constructed. The
situation model represents the program’s data flow and goals. Any competent programmer can construct
the program model. The situation model is constructed when the meaning of the program is important,
and is more difficult to construct than the program model. The data flow is not as obvious as the control
flow, and the function of the program is the hardest to discover.

Later work expanded Pennington’s model by considering the effect of expertise, programming paradigm,
and task (Bidlake et al., 2020). While both novice and expert programmers show no differences in the
construction of the program model, novices do have more difficulty in constructing the situation model
(Burkhardt, Détienne, & Wiedenbeck, 2002). Object-oriented program comprehension does not proceed
in the same way as procedural program comprehension, in that both program and situation models
are constructed in parallel. Burkhardt et al. expanded the program model to include a macrostructure
consisting of the control flow between functions. They expanded the situation model for OO programs
to take into account objects and their interrelationships. The majority of program comprehension studies
use program understanding, also known as read-to-recall as their task (Bidlake et al., 2020). The read-
to-recall task is to remember program code after a study period, either by answering questions about
the code or paraphrasing it. Other tasks used in studies can be classified as read-to-do, which includes
modification, debugging, and classifying programs (Bidlake et al., 2020). As suggested in Pennington’s
study and confirmed in later work, the development of the situation model is more likely given a read-
to-do task, where understanding the meaning of the program is important.

PPIG 2020 9 www.ppig.org

2.1. Illustrative Example
There are many parallel programming models, suitable for parallel execution using vector instructions
and threads on multicore processors and graphics processing units, and processes across processors in a
cluster. We use OpenMP as an easy to understand and popular shared memory programming model in
our illustrative examples. Consider the nested loops in Figure 1 written in the C programming language,
annotated with an OpenMP parallel directive (Liao, Lin, Asplund, Schordan, & Karlin, 2017).

double a[len][len];
\\ ...
#pragma omp parallel for private(j)
for (i = 0; i < len - 1; i += 1) {
for (j = 0; j < len ; j += 1) {
a[i][j] += a[i + 1][j];

}
}

Figure 1 – C/OpenMP simple race condition example

We can examine this code as a miniature program comprehension exercise, and identify the components
of the two-level program/situation model. We’ll start by ignoring the OpenMP pragma. The program
model contains both a micro- and a macro-structure (Détienne, 2001), but here only the former is rele-
vant. The microstructure represents the surface details and the control flow of the program: two nested
for loops updating elements of a two-dimensional array a. This model is built automatically by any
programmer with syntactic/semantic knowledge of the language. The situation model has static and
dynamic components. Here the dynamic situation model represents the data flow of the program and the
static situation model represents the goal of the program. Construction of the situation model is optional,
and takes more effort. It involves tracing updates to the matrix, where elements of each row are replaced
by the sum of their value and their lower neighbour. In this small code sample this is also the goal of the
program.

The OpenMP pragma tells the compiler to parallelize the outer loop by forking threads and assigning
contiguous blocks of iterations to them. All variables are shared among threads by default, except for
the iteration counter i (implicitly) and the counter j (using the private clause) of the inner loop,
which are private. This adds to the program model the text itself, but not its meaning, other than its
identification as a compiler directive. It adds to the situation model the parallelization of the outer loop
and the knowledge that the iteration variables i and j are private to each thread, that a is shared, and
that there is an implicit barrier at the end of the outer loop. Analysis of the data flow must now take
into account multiple threads. This analysis reveals a problem, namely a data race. A thread working on
row i could read from a value in row i+1 while a thread working on row i+1 is writing to the same
memory location, leading to incorrect results.

Whereas the above analysis of the comprehension of the non-parallel code is based on mental structures
for which there is considerable experimental evidence, there is no evidence that the analysis in the
previous paragraph reflects how programmers think about parallel programs.

Full parallel program comprehension might even seem impossible. In the words of Skillicorn and Talia
(1998), "An executing parallel program is an extremely complex object." There may be hundreds of
threads executing concurrently, and threads may communicate with each other synchronously or asyn-
chronously. The interleaving of memory accesses by multiple threads may change from execution to
execution, which can lead to nondeterministic results in a faulty program. How can comprehension of
such complex execution happen? We propose that the programmer builds mental models of representa-
tive cases of parallel execution, and then reasons about the correctness and meaning of the code using
these models. We further propose to introduce a new component to the memory model theory, namely
the execution model, which represents the execution of a program. In the example above, the execution

PPIG 2020 10 www.ppig.org

model would represent the execution of multiple threads and how they lead to a data race by reading and
writing to the same locations of the a array.

3. Notional Machines and Machine Models
Texts written in a high-level programming language must be translated into machine instructions in or-
der to be executed on a computer. This has important implications for the programmer’s mental model.
Any educated programmer knows that a single high-level instruction may be translated into multiple
low-level instructions. However, as the programmer traces through some code and executes it in their
working memory, they do so on an abstract mental representation of a machine that can execute the
high-level instructions directly. This abstract machine has been called the notional machine in the con-
text of computer science education. (Du Boulay, 1986): "A notional machine is a characterization of
the computer in its role as executor of programs in a particular language or a set of related languages."
(Sorva, 2013, p. 2). In this definition ’computer’ refers to both hardware and system software (com-
piler/interpreter, operating system). There can be multiple notional machines for the same language, at
different levels of abstraction. For example, it’s possible to mentally execute a C program without con-
sidering how memory is divided into stack and heap. It’s also possible to track the memory management
with a lower-level notional machine.

Notional machines, together with the literature on knowledge mental models, are valuable for computer
science pedagogy. Experiments have shown that novice programmers’ mental models are inadequate
(Sorva, 2013), and computer science instructors commonly observe students’ superstitions about the
behaviour of the notional machine. A challenge in educating programmers is to help them build viable
notional machines, so that they can accurately reason about programs and simulate them mentally.

We argue that something akin to notional machines is relevant for expert program comprehension. This
knowledge can be called a machine model. It adds the cost of execution to the programming schema
knowledge that experts possess, including the contribution of compilers, operating systems, runtime
software, and hardware. For instance, it allows programmers to assess the overhead of function execution
and the desirability of function inlining. For a programmer performing incremental parallelization of a
sequential program, knowledge of the machine model allows them to reason about whether parallelizing
a loop is worthwhile, based on the cost of the parallelization overhead. The machine model also supports
the dynamic aspects of the mental model of the expert programmer, when faced with a comprehension
task. While comprehension relies to a large extent on static knowledge of programming plans, it also
can involve the dynamic aspects of the mental model, particularly data flow. Mental execution may
be required if the programmer is unfamiliar with a programming plan, either because the plan doesn’t
follow the rules of programming discourse or because the programmer has not seen the plan before
(Détienne, 1990). For parallel programming, reasoning about the execution of the program is crucial in
assessing correctness and performance, as in the example in Figure 1.

Previous work has not emphasized the dynamic aspects of program comprehension. We argue that it
would be fruitful to move comprehension of data flow from the situation model into a separate compo-
nent called the execution model. We believe that the construction of the execution model in working
memory depends on the machine model that is used, but we will focus on the former in what follows.

4. Mental Models for Reasoning
According to Johnson-Laird there are at least three types of mental representations:

1. Propositional representations (strings in a natural language)

2. Images, which are perceptions from a particular point of view

3. Mental models, "which are structural analogues of the world" (P. N. Johnson-Laird, 1983)

Mental models can be manipulated, and can be used to reason without formal logic. The structural
analogues are usually two or three-dimensional icons. As Johnson-Laird explains in a 2010 review, "A

PPIG 2020 11 www.ppig.org

visual image is iconic, but icons can also represent states of affairs that cannot be visualized", such as
"the abstract relations between sets that we all represent." (P. N. Johnson-Laird, 2010). These icons are
not restricted to a single point of view but can be manipulated.

Johnson-Laird’s main concern is with understanding how people reason using mental models. His re-
search has convincingly demonstrated that humans don’t reason using formal logic (the "doctrine of
mental logic"). He makes an important point about the complexity of reasoning, which is relevant
to the comprehension of parallel programs: "Almost all sorts of reasoning,..., are computationally in-
tractable. As the number of distinct elementary propositions in inferences increases, reasoning soon de-
mands a processing capacity exceeding any finite computational device,..., including the human brain"
(P. N. Johnson-Laird, 2010). Humans deal with this complexity by constructing representative mental
models.

Consider the following sentence (P. N. Johnson-Laird, 2004):

> The cup is on the right of the spoon

It might be reasonable to postulate that the meaning of this sentence is represented by the reader in a
mental language. What if we add three more sentences:

> The plate is on the left of the spoon.
> The knife is in front of the cup.
> The fork is in front of the plate.

and ask the question: what is the relation between the fork and the knife? Answering this question
requires spatial reasoning, not reasoning about language. A mental model for these four premises can
be given as:

> plate spoon cup
> fork knife

This model can then be used to give the answer to the question: the fork is on the left of the knife.

Consider now the same four premises with a small change to the second one:

> The plate is on the left of the cup.

These premises can be represented with at least two models, the model above and this one:

> spoon plate cup
> fork knife

The answer to the question is still the same (the fork is on the left of the knife), however the reasoning
is more difficult, because more than one model needs to be considered. The extensive literature on
reasoning with mental models is likely to contain insights into how programmers reason about code.

5. Execution Model
Comprehension of the illustrative example in Figure 1 requires applying knowledge of how the loop
iterations are assigned to threads (the C/OpenMP machine model). Comprehension of the parallel aspect
of this code requires reasoning about the data access pattern of the threads, in other words the parallel
data flow. This comprehension can be done independently of the understanding of the meaning of the
program, which forms the static part of the situation model. The programmer, faced with the task
of verifying the correctness of this code, could conceivably focus on the parallel data flow without

PPIG 2020 12 www.ppig.org

bothering to understand the meaning of the code. In contrast, the essence of the situation model in text
understanding is the situation of the text, that is its meaning.

We propose to carve out a separate mental execution model, which would include the dynamic aspect of
the situation model, namely the data flow. The separation of the execution model could account for the
separate understanding of the behaviour of the the program from its meaning. This behaviour occurs at
two levels: data flow in the program text and data flow in the computer. The latter behaviour is key to
understanding parallel programs. It is also key to understanding the performance of any program, for
example the flow of data between levels of the memory hierarchy. The first level bears more discussion.
While the data flow of a program can be considered between variables in a program, it is often considered
in the context of one or more data structures. Part of the comprehension of a non-trivial program is
understanding the data structures, which are not evident in the surface of the text. They form part of the
understanding of the underlying algorithms used in the program. Data structures do not seem to have
been considered in models of program understanding (Détienne, 2001, ch. 6, footnote p. 94).

The execution model can be divided into three layers of abstraction. At the top, it represents the be-
haviour of the operations on the data structures. In the middle, the data flow between variables in the
program text. At the bottom, the data flow in the processing elements of the computer.

The comprehension model in Table 1 modifies Burkhardt et al.’s version of the program/situation model
(2002), which accounts for object oriented programs, by moving data flow from the situation model to
the execution model, and adding two aspects of data structures to the execution and situation models.
The identification of the data structure refers to the program’s meaning, and is part of the situation
model. The behaviour of the data structure, that is its mutation by one or more threads of execution, is
part of the execution model. The parts of the execution model that are unique to parallel programs are
discussed in the following example.

Program Model

Microstructure:
Program statements
Control flow
Macrostructure:
Functional structure
Control flow between functions

Execution Model

Data structures (behaviour)
Data flow (text)
Data flow (machine)
Parallel programs:
Decomposition
Communication

Situation Model

Data structures (identification)
Program goals
Domain objects (classes)
Relations between objects
Communication between objects

Table 1 – Three-part comprehension model.

5.1. Another Illustrative Example
Consider another C/OpenMP example (Mattson & Meadows, 2014) in Figure 2, where p is a struct
containing a node *next pointer and a pointer to some payload that will be used in the execution of
the process() function.

Ignoring the parallel directives for the moment, the following comprehension process can be sketched.
The program model would identify a loop that continues as long as pointer p is not NULL, the initializa-
tion of pointer p and its updating in the loop, and its passing to function process. The situation model
would contain the meaning of this code as the processing of data that is stored in a linked list. The role
of the execution model could depend on whether the programmer is a novice or an expert. An expert
would not likely have to mentally invoke the dynamic aspect of the linked list; its static meaning should
be sufficient. A novice who was unfamiliar with linked lists, might need to trace execution of the linked
list, that is invoke the execution model, on their way to understanding its meaning.

The execution model is more pertinent to the parallel version of the code. Adding parallel directives
doesn’t change the meaning of the code, so the situation model is unchanged. It does require under-
standing how the code executes in parallel, hence the execution model is vital. This understanding

PPIG 2020 13 www.ppig.org

#pragma omp parallel{
#pragma omp single{
node * p = head;
while (p) {
#pragma omp task
process(p);
p = p->next;
}

}
}

Figure 2 – C/OpenMP parallel linked list example

includes the forking of threads at the beginning of the code, followed by the restriction of the code’s
execution to a single thread. Each iteration of the while loop involves creation of a new OpenMP task
which is scheduled by the OpenMP runtime on another thread. In other words, one thread dispatches
the tasks, which are executed by multiple threads.

Decomposition and communication are two key parts of the execution model which are found only in
comprehension of parallel programs. The former is an essential part of any parallel program (Aubanel,
2016). The example in Figure 2 exhibits a trivial decomposition into tasks. Data decomposition also
features prominently in parallel computing. The example of Figure 1 exhibits decomposition of the
two-dimensional array into blocks of rows. While commmunication is not explicit in shared memory
programs such as these, it can be present implicitly in the ordering of memory accesses of the threads.
Communication should form an explicit part of the execution model of distributed memory programs,
such as those that involve message passing.

5.2. Reasoning with the Execution Model
A mental model represents a possibility (P. Johnson-Laird, 2001). What are the possibilities for
the execution model for the example in Figure 1? Knowledge of the semantics of the OpenMP
parallel for directive reveal that the default scheduling is to partition the the iterations of the
outer loop into contiguous blocks, one per thread. The execution model would represent the de-
composition of the 2D array into blocks of rows and the dependence between blocks arising from
a[i][j] += a[i + 1][j];. It also needs to represent the dynamic behaviour of the threads.
A simplifying (but not generally correct) assumption is that threads start at exactly the same time and
proceed in lock step. This means that a thread working on the last row of its block would use values in
the next row which had already been updated by the thread working on the next block, yielding incorrect
results. This single possibility can be used to identify the data race.

Programmers can’t possibly follow the execution of multiple threads, especially since the relative timing
of the threads can vary from one execution to the next. Instead, programmers construct mental models for
representative cases, each corresponding to an interleaving of a particular number of threads. Reasoning
gets more difficult as the number of mental models increases (P. Johnson-Laird, 2001). The code in
Figure 3 (Liao et al., 2017) represents a more subtle race condition, where xa1 and xa3 point to two
elements of an array, where xa3 − xa1 = 12.

As hinted by the note, there is a dependence between iterations 0 and 5, where xa1[521] and
xa3[533] point to the same location. This is not a problem if iterations 0 and 5 are handled by
the same thread; a race condition occurs if they are handled by different threads. Assuming the same
static scheduling of the loop iterations, this means that iterations 0 and 5 would be handled by the same
thread if the total number of threads is less than 36. This requires mental models for two possibilities:
number of threads < 36 and ≥ 36. The programmer could miss the race condition by using a single
possibility of less than 36 threads, which could easily happen if they are used to working with a small
number of threads.

PPIG 2020 14 www.ppig.org

#define N 180
int indexSet [N] = {
//Note: indexSet[5] − indexSet[0] = 533−521= 12
521, 523, 525, 527, 529, 533,
547, 549, 551, 553, 555, 557,

// omitted code here ...
};
#pragma omp parallel for
for(i=0; i< N; ++i){

int idx=indexSet[i];
xa1[idx]+=1.0;
xa3[idx]+=3.0;

}

Figure 3 – C/OpenMP tricky race condition example

6. Acknowledgements
The author acknowledges the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), RGPIN-2018-04811.

7. Conclusion
Understanding a program involves more than determining its meaning. It also involves understanding
its dynamic behaviour. This is particularly important for the comprehension of parallel programs, where
the behaviour of multiple streams of execution must be understood. We have argued that adding an
execution model to the current mental model theory would account for this understanding. This includes
data structures and their decomposition in the mental representations of parallel programmers.

Program comprehension involves knowledge stored in long term memory in addition to the mental
representations created in working memory during comprehension. Understanding a parallel program
requires a mental model of the parallel system, which could be viewed as a notional machine for ex-
pert programmers. Different parallel programming languages have different machine models (Aubanel,
2016; Skillicorn & Talia, 1998). The impact of a language’s machine model on the comprehension of
its execution would be worth studying. Languages that have a high level of abstraction may make it
difficult to understand what is happening at the machine level, which is necessary in order to reason
about performance. Languages at a lower level of abstraction may involve a tradeoff between expos-
ing execution at the machine level and increasing the cognitive load of having to understand multiple
streams of execution.

How do programmers actually reason about a parallel program’s behaviour? They likely use their knowl-
edge about the programming language’s machine model to construct representative cases. This could be
similar to how people reason about natural language texts, and could lead the way to understanding what
makes one program harder to understand than another, and what kind of mistakes even expert program-
mers make. Understanding how parallel programmers reason, and the challenges they face, could lead to
the development of representations that would aid in comprehension. This could include diagrammatic
representations, to show the decomposition of data structures and the communication between tasks.
Without knowing anything about programmers’ mental representations, it’s hard to predict whether a
proposed representation would be helpful.

8. References
Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., . . . others (2006). The

landscape of parallel computing research: A view from Berkeley (Tech. Rep.). Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley.

Aubanel, E. (2016). Elements of parallel computing. CRC Press.

PPIG 2020 15 www.ppig.org

Bidlake, L., Aubanel, E., & Voyer, D. (2020, July). Systematic literature review of empirical studies on
mental representations of programs. Journal of Systems and Software, 165(110565).

Burkhardt, J.-M., Détienne, F., & Wiedenbeck, S. (2002). Object-oriented program comprehension:
Effect of expertise, task and phase. Empirical Software Engineering, 7(2), 115–156.

Du Boulay, B. (1986, February). Some Difficulties of Learning to Program. Journal of Educational
Computing Research, 2(1), 57–73.

Détienne, F. (1990). Expert Programming Knowledge: A Schema-based Approach. In Psychology of
Programming (pp. 205–222). Elsevier.

Détienne, F. (2001). Software Design–Cognitive Aspects. Springer Science & Business Media.
Johnson-Laird, P. (2001). Reasoning with Mental Models. In International Encyclopedia of the Social

& Behavioral Sciences (pp. 12821–12824). Elsevier.
Johnson-Laird, P. N. (1983). Mental Models. Cambridge University Press.
Johnson-Laird, P. N. (2004). The history of mental models. In Psychology of reasoning (pp. 189–222).

Psychology Press.
Johnson-Laird, P. N. (2010, October). Mental models and human reasoning. Proceedings of the National

Academy of Sciences, 107(43), 18243–18250.
Liao, C., Lin, P.-H., Asplund, J., Schordan, M., & Karlin, I. (2017). DataRaceBench: a benchmark

suite for systematic evaluation of data race detection tools. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’17 (pp.
1–14). Denver, Colorado: ACM Press.

Mattson, T., & Meadows, L. (2014). A “Hands-on” Introduction to OpenMP. Retrieved
2020-03-25, from https://extremecomputingtraining.anl.gov/files/2016/
08/Mattson_830aug3_HandsOnIntro.pdf

Mattson, T., & Wrinn, M. (2008). Parallel programming: can we PLEASE get it right this time? In
Proceedings of the 45th annual Design Automation Conference (pp. 7–11). ACM.

Pennington, N. (1987). Stimulus Structures and Mental Representations in Expert Comprehension of
Computer Programs. Cognitive Psychology, 19(3), 295–341.

Sadowski, C., & Shewmaker, A. (2010). The last mile: parallel programming and usability. In Pro-
ceedings of the FSE/SDP workshop on Future of software engineering research (pp. 309–314).
ACM.

Skillicorn, D. B., & Talia, D. (1998, June). Models and languages for parallel computation. ACM
Computing Surveys (CSUR), 30(2), 123–169.

Sorva, J. (2013, June). Notional machines and introductory programming education. ACM Transactions
on Computing Education, 13(2), 1–31.

Storey, M.-A. (2006, September). Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal, 14(3), 187–208.

von Mayrhauser, A., & Vans, A. M. (1994). Comprehension Processes During Large Scale Maintenance.
In Proceedings of the 16th International Conference on Software Engineering (pp. 39–48). Los
Alamitos, CA, USA: IEEE Computer Society Press.

PPIG 2020 16 www.ppig.org

What the Mouse Said:

How Mouse Movements Can Relate to Student Stress and Success

Natalie Culligan

Department of Computer

Science

Maynooth University

natalie.culligan@mu.ie

 Kevin Casey

Department of Computer

Science

Maynooth University

kevin.casey@mu.ie

Abstract
Stress in students may be a useful indication for when a student is struggling and in need of

academic intervention. Investigating differences in student behaviour in stressful and comparatively

less stressful environments could be helpful in understanding the processes involved in learning to code,

and combatting the high levels of drop-out and failure in undergraduate computer science. In this paper

we will discuss the mouse movement data gathered from Maynooth University Learning Environment

(MULE), our in-house, browser-based pedagogical environment for novice programmers, during the

time period February to May of 2019. This included 5 supervised, scheduled lab sessions and two in-

lab examinations. The data was used to examine 21 different measurements of student behaviour, for

example, by measuring efficiency of the mouse path, or the time between mouse click-down and mouse

click-up. These features were used to build a Deep Neural Net that classifies sequences of mouse

movements as being either from a more stressful environment or a less stressful one by training the

classifier on data from examination situations and regular weekly lab situations, with the goal of

comparing how students behave in environments with different levels of student comfort. The classifiers

had an average accuracy of 61.9% but was more successful with students who performed poorly in their

lab examinations. To further examine this connection between mouse movement, stress and student

outcome, a second classifier was built to classify students as being in the high or low 50% of lab-exam

grades in the module, with an accuracy of 69%.

1. Introduction
In this study we use data collected by Maynooth University Learning Environment, or MULE

(Culligan, Casey 2018). MULE is an online, browser-based pedagogical desktop environment which

has been used in multiple first-year coding modules. We received clearance from the University Ethics

Committee to collect mouse movements from students as they learn to code from the 29th of February

until the 3rd of May in the Introduction to Programming II module (taught in Java) with 250 students

completing the module. The students were informed about the use of their data and were asked to

consent at the beginning of the semester. All students who completed the module chose to participate

in the study.

Using the mouse movement data collected by MULE, a Deep Neural Net (DNN) binary

classifier was built to detect if a sequence of mouse movements is from a stressful (in-examination) or

less stressful environment (in-lab). The classifier is not universal. It needs to be trained on a student’s

own data and does not work on all students. This was expected, as stress and comfort are subjective and

not all students will experience stress in the same way during an examination. Students may also have

different mouse use “styles”, which makes it harder to generalise mouse behaviour caused by stress.

We must also consider that some students are not stressed during an examination and may even be less

stressed than in a normal lab situation.

The classifier works very well for some students and poorly for others, with an average increase

of 11%-12% over the accuracy baseline of 50%, an average accuracy of 61.9% for classifying both in-

lab and in-examination sequences. The classifier was moderately successful but interestingly the

classifier was more successful for students who did poorly in the module. To further explore this, we

built a second DNN to investigate if the mouse movement data could be used to classify students as

being in the top or bottom 50% of module grades. This classifier was more successful than the stress

PPIG 2020 17 www.ppig.org

classifier, classifying students as being in the top or bottom 50% of the module Continuous Assessment

grades with an accuracy of 69%, over an accuracy baseline of 50%.

In this paper, the following questions will be explored in relation to the gathered mouse movement data.

1. Are there differences in mouse movement behaviour of students between lab and exam

situations, and can this be a first step in a classifier for stressed students?

2. Are there differences in student mouse behaviour and stress in students in CS1 between

students who perform well in-lab examinations and written exams, and those who perform

poorly?

The null hypothesis for these questions are as follows:

1. The results from the Deep Neural Net for classifying sequences of mouse movements

sequences as being from stressful or not stressful environments performed no better, or not

significantly better than random chance.

2. The results from the Deep Neural Net for classifying individuals as being in the top or

bottom performing 50% of students performed no better, or not significantly better than

random chance.

2. Motivation and Related Research
Stress in students may be a useful indication for when a student is struggling and in need of

academic intervention. Intervention for students experiencing unusual amounts of stress could be

helpful in combatting the high levels of drop out and failure in undergraduate computer science

(Beaubouef et al, Biggers et al, Giannakos et al, Hembree et al, Kinnunen et al). This is the first of our

studies into student behaviour as they learn to code, and in this study we focus on mouse movement.

There are studies that suggest that mouse movement is linked to stress and mood (Sun et al., Wahlström,

et al., Yamauchi). In this paper, we are interested in examining student mouse movement in stressful

and less stressful environments to try and gain insight into behaviours that indicate stress, and

investigate if this is related to student performance.

2.1. Stress Levels in Students
Computer science courses have been reported to have low levels of retention in comparison to

other subjects (Giannakos et al., Kinnunen, et al.). Research suggests that student comfort is a useful

signifier of student success and retention (McCracken et al., Tenenberg, et al., Wilson and Shrock), and

that stressful situations such as examinations can cause a student to preform below their ability (Beilock

and Carr).

Beilock and Carr discuss the connection between anxiety and a loss in academic performance,

and suggest that situation-related worries – such as examination stress or anxiety – can result in a loss

of focus on task at hand as the working memory is occupied. Alternatively, it has also been suggested

that over-attending to performance, overthinking tasks usually performed automatically, can lead to

underperforming in an uncomfortable or stressful situation. Beilock et al. discuss how a more stressful

or anxious state can also affect tasks that are usually performed in an automated fashion, without the

subject thinking too much about it – their paper mentions soccer players’ dribbling. We propose that

mouse movement could be considered in a similar manner.

Connolly et al. found that in their study of 86 computing undergraduate students, 44.4%

reported not feeling relaxed when using computers, suggesting that research into this area would be

beneficial to a significant portion of the student population.

Bergin and Reilly examined 15 factors in predicting if a student is likely to pass or fail. One of

the most statistically significant factors in predicting success was comfort level, in relation to how the

student felt about the course. This was measured through cumulative responses to questions about the

students’ understanding and difficulty completing lab assignments.

2.2. Mouse Movement and Stress

PPIG 2020 18 www.ppig.org

There is prior evidence of a link between student stress and comfort level and their mouse

movements. Sun et al. constructed a Mass Spring Damper model for the human arm - essentially a

model for approximating arm motion and stiffness which could be fed with data from mouse

movements. Using arm stiffness as a proxy for stress in the user, the authors report that their method

was tested across a variety of prescribed stress tasks. The classifier worked when generalised but was

more effective when trained and tested separately for each user.

Yamauchi claims there is both psychological and neurological evidence to suggest that mouse

trajectories can be used to assess affective states, such as anxiety. The results of their study show that

temporal features, such as speed of mouse movement, and spatial features such as direction change were

both indicative of the user’s state of anxiety. The researchers in this paper ran a separate analysis for

male and female users and found different indications of state anxiety, with female subjects being more

inclined to use a less efficient mouse path when anxious, and male subjects being more likely to change

their mouse velocity.

Kapoor et al. use a specialised pressure mouse with additional sensors to detect frustration in

subjects as they attempt to complete a towers of Hanoi puzzle computer game. The game includes an

“I’m frustrated” button for the users, which is used to associate behaviour with frustrated state. The

resulting classifier can predict frustration at an accuracy of 79%, outperforming the random classifier

(58%).

3. Research Design
The goal of this study was to examine the relationship between student mouse behaviour,

student outcome, and comfort level in students in CS1, an introduction to programming module. Using

the data from MULE, we constructed a Deep Neural Net binary classifier to classify sequences of mouse

movements as being from a stressful environment or a less stressful one.

MULE was used to collect mouse movement data from students as they learned to code in an

authentic learning environment. To use the system, the students sign in through their Moodle accounts

from any internet browser on any machine, they do not need to be in the university computer labs. The

system is a desktop-like environment simulated within the browser, where they can view assignments

from a designated application, use a text editor to write code for the assignments, and compile, run and

automatically evaluate their code, receiving a grade and automated feedback if their code has errors.

The students use the mouse to navigate the system, to open assignments, open the code editor, and to

save, compile, run and evaluate from drop down menus. As the student works, the system automatically

stores their mouse movements, along with a timestamp and an anonymised user key to allow for cross

session comparisons. Stored mouse movements are sent to the database every 30 seconds, or as soon as

the user tries to log out or close the system tab. The system collects mouse movement data as shown in

Table 1. Anonymised data on students’ performance in the module was also collected, specifically how

they performed in the written examination, in weekly labs and in-lab examinations. The total number

of students who completed the second semester was 250, of which 196 are included in this study. We

removed data from students who did not participate enough for their data to be used in the study,

including:

Data Type Description

userID The anonymous ID assigned to the student

dumpID The ID of the dump from student session to the database

sessionID An ID assigned to the session when a student logs in until they log out

Time Timestamp of when the event took place, not when it was stored

Type Mousemove, mouseup or mousedown

X X co-ordinates of the mouse’s current position

y Y co-ordinates of the mouse’s current position

Table 1: Mouse movement data features

PPIG 2020 19 www.ppig.org

1. Students who did not take both in-lab examinations

2. Students who did not complete the course

3. Students who participated in less than two lab sessions

Students have labs for 3 hours once a week for 12 weeks per semester. The students began using

the system in the first semester of the academic year 2018/2019 and used the system for the rest of the

academic year. The mouse movement data set we are examining in this paper is from the second

semester, from the 29th of February until the 3rd of May. This time period includes 5 regular weekly labs

and 2 in-lab examinations. We compare mouse data from students in a regular lab situation versus

mouse data from an examination situation, to examine the differences between coding when in

situations with different levels of comfort. Both situations are in the same physical space, but with

different rules. The students are not allowed to speak to each other, ask for help from demonstrators or

look back at their previous work during the examination situation, but are encouraged to do so during

regular labs. One of the authors worked as a demonstrator in the labs where this research took place to

ensure the coding environment was working correctly, and to assist the students.

We recorded mouse data from students as they worked in scheduled labs, scheduled

examinations, and outside of these times. The data from outside of the lab is not discussed in this paper.

Data outside scheduled labs and examinations may be the result of users other than the signed-in student

and/or very different mouse set up (touch screen, touch pad, or different desk size, for example).

Students may also be working in very different situations due to environmental noise, distractions, or

caretaking responsibilities, for example.

The mouse data from each student is divided into sequences to be assessed by the classifier.

Each sequence begins with any mouse movement and ends with a mouse click-up, and any sequence

that is longer than 1450ms is rejected to avoid evaluating sequences from when the student is idle. This

time limit was chosen though trial and error, and found the classifier worked best with sequences under

this time limit. Tests are run on each sequence to find various metrics for the users’ behaviours. Metrics

include SequenceSpeed, ClickTime and Efficiency. Each sequence also has an identifier, as in-lab, in-

examination or out-lab. Once we have the metrics for each of the sequences, they are used to train and

test the Deep Neural Net.

We used a total of 21 different features in our classifier.

Features

1. AngleVariance1:

Finds all the different angle changes from one movement to the next (with precision of 2 digits)

within a sequence and returns the total number of unique angles.

2. AngleVariance2

Same as above, but the total number of angles returned.

3. AngleVariance3

The ratio of total angles to unique angles.

4. VarianceDistance1

Finds the optimal distance between every set of two mouse movements to 1 decimal place and returns

the number of all unique distances.

5. VarianceDistance2

Same as above but returns the number of all distances.

6. VarianceDistance3

The ratio of all unique distances and all distances in the sequence.

7. Overshoot-x

Measures how far a user “overshoots” with the mouse in the direction they are moving the mouse in,

along the X axis. If a user moves from point a to point b within a small window of time, point b being

where they click the mouse, if at some point during this journey they move further along the x-axis

then where they ended, this is recorded as an Overshoot-x.

8. Overshoot-y

Same as Overshoot-x, but along the y axis.

PPIG 2020 20 www.ppig.org

9. Overshoot

The square root of Overshoot-x and Overshoot-y squared and added.

10. OvershootDirectionAngle

Finds the angle of the overshoot.

11. SequenceSpeed

The total distance travelled divided by the total time.

12. SequenceDuration

The time duration of the sequence.

13. DistanceTravelled

The true distance travelled during the sequence.

14. OptimalDistance

The distance in a straight line between the start and end points of the sequence.

15. Efficiency

Optimal distance divided by total distance travelled.

16. Direction

The direction from the first point in the sequence to the last.

17. DirectionAngle

The direction angle between the starting point and the ending point of the sequence.

18. AngleDifference

The absolute value of DirectionAngle subtracted from OvershootDirectionAngle.

19. ClickTime

The time between click down and click up.

20. Hesitate

The amount of time the mouse stalls before the user clicks.

21. ClickRatio

This is Hesitate divided by ClickTime

Yamauchi’s paper ‘Mouse Trajectories and State Anxiety: Feature Selection with Random Forest’

found that speed and direction were indicators of a subject’s emotional state. Our features are chosen

to examine this connection, with features such as DistanceTravelled and ClickTime relating

to speed, and DirectionAngle and OvershootDirectionAngle relating to direction. The

paper also discusses tracking direction change, x-overshoot, y-overshoot, which we replicated in our

experiment with features such as Overshoot-x, Overshoot, DirectionAngle and

DirectionAngle. Beilock et al discuss how a more stressful or anxious state can also affect tasks

that are usually preformed in an automated fashion. We investigated this with the features

VarianceDistance1, VarianceDistance2, VarianceDistance3, to give us insight into

how much the subject changed their speed, and the features AngleVariance1, AngleVariance2

and AngleVariance3 to investigate how often the subject changed direction, perhaps due to

confusion or indecisiveness as a result of stress or discomfort.

As per Sun et al., we trained our classifier per user, instead of building a generalised stress

classifier. Our initial experiments involved a general classifier using a large subsection of the data from

all students, but this classifier did not perform significantly better than random chance. To build a

classifier for a user, we selected all the sequences from in-examination, and then a random selection of

sequences of an equal amount from in-lab, or vice-versa, depending on the imbalance of data

categorised as in-lab or in-examination. The features we get from the mouse movements of each student

are then used to train and test a deep neural net, built in Python using TensorFlow (Abadi, Martín, et

al.).

For most students, we have much more in-lab data than in-examination, so we take a random

sample of the in-lab data equal to the size of the in-examination data. We used TensorFlow’s

DNNclassifier module, with 3 hidden layers of 10 units, a batch size of 5 and 2000 epochs. The classifier

outputs a 1 if the mouse movement sequence is classified as in-lab and 0 if the sequence is classified as

in-exam. When running the classifier for each student, we wanted to ensure that the results were not

due to chance, or a “lucky” selection of test data from the total data set. To combat this, we selected a

subsection of the data as test data, and rejected it if it was not 50/50 in-lab and in-exam, again to avoid

PPIG 2020 21 www.ppig.org

good results that are just the result of a classifier only choosing one classification, regardless of feature

input. To check that the variance for the classifier results was low, and we were not reporting outliers,

the classifiers were run in sections of ten, and the variance within results was checked. The variance for

all users was 0.05 or less, with one exception that had a larger variance of 0.13. We performed multiple

sets of ten, checking the variance on the cumulative results. For each student, the classifier was run 60

times, with a different random division of training and test data with no increase in variance over 0.016

between the first 10 and the final 60.

4. Discussion of Classifier Performance
The classifier works very well for some students and poorly for others, with an average increase

of 11% to 12% over the accuracy baseline and an average accuracy of 62.9% for classifying both in-lab

and in-examination sequences. However, for some students that performed poorly in their lab

examinations, we found the classifier could work 30% over baseline. On examination of the results, it

became apparent that the classifier was more successful with the students who performed poorly in the

module than those who performed well. One of the possible reasons for student stress during exams is

that they may be unable to use their usual method of solving coding problems. Some students will take

previously written code, copy it and rewrite it to complete the given task. During exams the students no

longer have access to their previous code. They may panic when they find they cannot use their usual

strategy (though they are informed beforehand of the format and rules of the exam), or they may be

experiencing additional strain on their working memory. This strain may come from the extra work now

being performed by the student. For example, they can’t copy a while loop from previous work, so

instead they struggle to remember how to write one. The student is not comfortable and familiar with

the computer science concepts needed to construct the code to solve the exam question and has been

relying on ‘tinkering’, a technique used by students as described by Perkins et al. and Jadud.

4.1. Stress Classifier
When examining the results of the classifiers, differences between the high-performing and

low-performing students became apparent. Table 2 shows the average classifier of two groups, the top

50% of grades and bottom 50% of grades. This was done for Continuous Assessment, written exam and

total module grade, and repeated with the top and bottom 40%, 30%, 20% and 10%.

 Module High Module Low Written

Exam High

Written

Exam Low

CA High CA Low

50% 61.875% 62.7913% 61.3518% 62.627% 60.8315% 63.1473%

40% 60.8037% 62.6183% 61.1019% 61.949% 60.7157% 63.8293%

30% 60.1556% 62.6878% 60.9173% 62.6955% 59.7906% 63.9333%

20% 60.0027% 62.5255% 59.8544% 62.8666% 59.7657% 63.4562%

10% 58.8089% 62.8847% 58.2153% 62.643% 59.4642% 65.3041%

Table 2: Comparison of the high and low performing students

In all groups, and with all three grade types, the lower grades group have more successful

classifiers, with the difference becoming more pronounced as we look at smaller subsections. We

suspect that the reason students in the lower-grade groups are easier to classify is because these students

may experience additional strain when writing code, perhaps due to exam anxiety, or a lack of comfort

with the material. In the paper “On the causal mechanisms of stereotype threat: Can skills that don't

rely heavily on working memory still be threatened?”, Beilock, et al. claim that while overloaded

working memory does not directly affect procedural skills because it is not reliant on working memory,

over-attention to procedural skills does impact the subject’s performance – a worried student may

overthink their behaviour, causing changes in their mouse movement.

4.2. High Low Grade Classifier
We were interested in the possible connection between mouse movements and student grades, from

the apparent relation between classifier success and the students’ performance in the module shown in

Table 2. We suspected that the results indicated a relation between mouse movements, specifically

indications of stress in exams, and student grades. There is previous work (Casey) to suggest that low-

PPIG 2020 22 www.ppig.org

level keystroke data can be used to improve grade classifiers, so we wanted to examine if mouse

movement data could also be used. To investigate this, a trio of DNN classifiers were created to predict

the outcome of students in:

1. Continuous Assessment (coding exercises, and lab exams),

2. End of year written exams

3. The module overall.

The DNN uses the same configuration as the stress classifier. We tried other configurations,

including increasing the number of hidden units, but found this was the most successful setting. The

DNN classifies each student into one of two categories – either the higher or lower 50% of the class,

divided by the results in order. For this dataset we calculated the average of each of the features in the

table for in-lab and out-lab. We found this gave the best results, possibly because the indicator of a

student who does well or poorly is the difference, or the similarity of the behaviour between regular

labs and exams, in line with the findings that the students who did poorly were more easily classed by

the classifier.

Like the previous classifier, the high/low classifier was run 60 times, each time randomly

selecting the training set and the testing set. Like the stress classifier, the randomisation was written to

ensure that the testing data set would always be 50% from each classification, to avoid misleadingly

high or low results from a classifier only choosing one classification.

5. Discussion of Research Questions
1. Are there differences in mouse movement behaviour of CS1 students between lab and exam

situations, and can this provide insight to the different comfort levels experienced by students

in these environments?

The DNN classifier was mildly successful, implying that there is at least a weak link between

mouse movement and comfort level. Students may still be stressed in lab situations, but because the

classifier was more successful with students who did poorly in their lab examinations, we believe this

is evidence that the classifier works as an indicator of stress – we believe that students who are taking

examinations that they are not doing well in are more likely to be experiencing stress than others. We

can reject the null hypothesis, as the classifier is more successful than a random chance classifier.

2. Are there differences in student mouse behaviour and comfort level in students in CS1

between students who perform well in-lab examinations and written exams, and those who

perform poorly?

The classifier is more effective with students who perform poorly than those who perform well.

We would expect students who do poorly in the module to be more stressed in examinations than

students who are comfortable with the material and are performing well. To examine this further we

built a second DNN classifier and found that we were able to classify students into high/low performing

groups with 69% accuracy. We reject the null hypothesis as the high/low classifier is more successful

than random chance.

6. Conclusions and Future Research
In this paper, we have reported on the construction of a moderately successful Deep Neural Net

that classifiers sequences of mouse movements as being from a stressful or less stressful environment.

While other researchers have published work on the connection between mouse movements and stress,

to our knowledge this is the only study of mouse movements and stress that uses mouse data gathered

Grade Higher 50% Lower 50% Classifier Results

Written Exam 63% and over 61% and under 0.588333333

Module Total 59% and over 58% and under 0.656666667

Continuous Assessment 54% and over 53% and under 0.693333333

Table 3: Results of classification

PPIG 2020 23 www.ppig.org

outside of closed experimental environments. From the analysis of the results, we found a connection

between mouse movements and a student’s grades, especially grades for practical coding assignments.

The classifiers in their current state are not a useful mechanism for detecting stress in students,

or for predicting if students will be in the high or low 50% of grades. However, in the construction of

these classifiers, we have found mechanisms that will contribute to the construction of models of

successful students, and classifiers for students in need of academic intervention. This study is part of

a larger project to examine the relationship between student behaviour when learning to code and

student success and retention. Our coding environment gathers data beyond mouse movement,

including keystrokes, compilation and run results, and returned errors. Other research in this area has

used data such as keystrokes to predict student outcome (Casey), and from our work in this paper, which

suggests a connection between student success and comfort-level, we believe this data will give further

insight to student behaviour in stressful situations. Further work can be done in relation to the mouse

analytics performed so far. We are currently refactoring our recording of mouse data so that we can

capture additional data in order to attach more meaning to mouse sequences. This would, for example,

allow us to distinguish between a mouse sequence that led to a file being saved, versus a mouse sequence

that led to a compilation of student code.

We believe there is huge potential for study of this data, which is gathered from an authentic

learning environment, as students learn to code. With continued research, we plan to build a larger

model of the behaviour of novice programmers as they learn to code, with the potential for an integrated

classifier in our coding environment that will alert course coordinators to a student in need of

intervention. We hope the construction of a model of successful students will be a useful way to inform

and build curriculums that best help students achieve their potential.

5. References
Abadi, Martín, et al. (2016) Tensorflow: A system for large-scale machine learning. 12th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16).

Beaubouef, Theresa, and John Mason. (2005) Why the high attrition rate for computer science

students: some thoughts and observations. ACM SIGCSE Bulletin 37.2 103-106. DOI:

https://doi.org/10.1145/1083431.1083474

Beilock, Sian L., and Thomas H. Carr. (2005) When high-powered people fail: Working memory and

“choking under pressure” in math. Psychological science 16.2 01-105. DOI:

https://doi.org/10.1037/e537052012-380

Beilock, Sian L., et al. (2006) On the causal mechanisms of stereotype threat: Can skills that don't rely

heavily on working memory still be threatened?. Personality and Social Psychology Bulletin 32.8

1059-1071. DOI: https://doi.org/10.1177/0146167206288489

Bergin, Susan, and Ronan Reilly. (2005) Programming: factors that influence success. ACM Sigcse

Bulletin 37.1 411-415. DOI: https://doi.org/10.1145/1047344.1047480

Biggers, Maureen, Anne Brauer, and Tuba Yilmaz. (2008) Student perceptions of computer science: a

retention study comparing graduating seniors with cs leavers. ACM SIGCSE Bulletin. Vol. 40. No. 1.

ACM. DOI: https://doi.org/10.1145/1352135.1352274

Casey, Kevin. (2017) Using keystroke analytics to improve pass-fail classifiers. Journal of Learning

Analytics 4.2 189-211. DOI: https://doi.org/10.18608/jla.2017.42.14

Connolly, Cornelia, Eamonn Murphy, and Sarah Moore. (2008) Programming Anxiety Amongst

Computing Students—A Key in the Retention Debate?. IEEE Transactions on Education 52.1 52-56.

DOI: https://doi.org/10.1109/te.2008.917193

PPIG 2020 24 www.ppig.org

https://doi.org/10.1109/te.2008.917193

Culligan, N., & Casey, K. (2018). Building an Authentic Novice Programming Lab Environment.

Irish Conference On Engaging Pedagogy

Giannakos, Michail N., et al. (2017) Understanding student retention in computer science education:

The role of environment, gains, barriers and usefulness. Education and Information Technologies 22.5

2365-2382. DOI: https://doi.org/10.1007/s10639-016-9538-1

Hembree, Ray. The nature, effects, and relief of mathematics anxiety. Journal for research in

mathematics education (1990): 33-46. DOI: https://doi.org/10.2307/749455

Kapoor, Ashish, Winslow Burleson, and Rosalind W. Picard. (2007) Automatic prediction of

frustration. International journal of human-computer studies 65.8 724-736. DOI:

https://doi.org/10.1016/j.ijhcs.2007.02.003

Jadud, M. C. (2006). An exploration of novice compilation behaviour in BlueJ (Doctoral dissertation,

University of Kent). DOI: https://doi.org/10.1080/08993400500056530

Kinnunen, Päivi, and Lauri Malmi. (2006) Why students drop out CS1 course?. Proceedings of the

second international workshop on Computing education research. ACM. DOI:

https://doi.org/10.1145/1151588.1151604

Lister, Raymond. Concrete and other neo-Piagetian forms of reasoning in the novice programmer.

Proceedings of the Thirteenth Australasian Computing Education Conference-Volume 114. Australian

Computer Society, Inc., 2011. DOI: https://doi.org/10.1215/9780822381525-005

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B. D., ... & Wilusz, T.

(2001). A multi-national, multi-institutional study of assessment of programming skills of first-year

CS students. In Working group reports from ITiCSE on Innovation and technology in computer

science education (pp. 125-180). ACM. DOI: https://doi.org/10.1145/572139.572181

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of learning in

novice programmers. Journal of Educational Computing Research, 2(1), 37-55. DOI:

https://doi.org/10.2190/gujt-jcbj-q6qu-q9pl

Sun, D., Paredes, P., & Canny, J. (2014, April). MouStress: detecting stress from mouse motion. In

Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 61-70). ACM.

DOI: https://doi.org/10.1145/2556288.2557243

Tenenberg, Josh D., et al. (2005) Students Designing Software: a Multi-National, Multi-Institutional

Study. Informatics in Education 4.1 143-162.

Wahlström, J., et al. (2002) Influence of time pressure and verbal provocation on physiological and

psychological reactions during work with a computer mouse. European journal of applied physiology

87.3 257-263. DOI: https://doi.org/10.1007/s00421-002-0611-7

Wilson, B. C., & Shrock, S. (2001). Contributing to success in an introductory computer science

course: a study of twelve factors. Acm sigcse bulletin, 33(1), 184-188. DOI:

https://doi.org/10.1145/364447.364581

Yamauchi, Takashi. (2013) Mouse trajectories and state anxiety: feature selection with random forest.

2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. IEEE,

2013. DOI: https://doi.org/10.1109/acii.2013.72

PPIG 2020 25 www.ppig.org

https://doi.org/10.1007/s00421-002-0611-7

Designing an Open Visual Workflow Environment

Charles Boisvert, Chris Roast, Elizabeth Uruchurtu
Dept. of Computing, Sheffield Hallam University

Sheffield, United Kingdom, S1 1WB
{c.boisvert | c.r.roast | e.uruchurtu}@shu.ac.uk

Abstract
This paper presents open piping, a box-and-wire programming environment, then uses Cognitive Di-
mensions of Notations to analyse its interaction design and identify its weaknesses. Physics of Notations
gives a complementary perspective to propose solutions which we present by example. We also discuss
the respective uses and benefits of Cognitive Dimensions and Physics of Notations in this work.

Keywords: Computer science education; Data Science; Functional Programming; End-User Program-
ming; Notational Design

1. Project background and motivations
Open Piping is an open-source visual functional programming environment, based on a box-and-wire
model, intended for data processing applications.

Our ambition is to propose a graphical tool for user-defined data processes1, with the transparency and
flexibility needed to ensure that users can easily define the processes they want to operate on data, while
also retaining control of these processes to use them in new environments.

Figure 1 – Open Piping interface with an example workflow

Fig. 1 shows the Open Piping interface and an example data flow. A more complete description of the
system is given in (Boisvert, Roast, & Uruchurtu, 2019).

Four elements motivate our work: the systematic improvement in access to programming brought by
the growing ease of use and learning of programming tools; the rise of data processing, underpinned
by functional programming and the growth of big data and data analytics; the possibility of modelling
functional computation visually; and finally the access barriers to this visual programming paradigm.

A systematic improvement in access to programming. Usability breakthroughs mark the progress of all
computer science, including programming. One remarkable advance is the wide range of programming
learning and novice developer environments, such as MIT Scratch, using a jigsaw puzzle metaphor to
represent the combination of individual statements (Resnick et al., 2009).

The rise of data processing. As simple applications have become more accessible, computation has
shifted to new domains, and to programming languages that support multiple paradigms, like R, Clo-

1http://boisvert.me.uk/openpiping

1
PPIG 2020 26 www.ppig.org

jure, or Python which add functional programming to imperative, object-oriented and event based de-
velopment. Yet, the jigsaw puzzle metaphor favours an imperative perspective on programming: the
programming paradigms computing education tools support best, are becoming less used in practice.

Modelling functional computation visually. Lambda calculus’ mapping to directed acyclic graphs pro-
vides a visual model, summarised table 1. The graph, or box-and-wire model, can read as a data flow.

Notation Represents Graphical equivalent
x Variable

λx. f Abstraction (function f has parameter x)
f x Application (function f is applied to variable x)

Table 1 – Basic elements of untyped λ -calculus and their representation as box-and-wire

Access limitations to visual functional programming Visual box-and-wire environments are common
(Le-Phuoc, Polleres, Tummarello, & Morbidoni, 2008; O’Reilly, n.d.), including some in commercial
(Instruments, accessed 2019) and scientific (Hull et al., 2006) use. But in many cases, the value of
the tools is limited by a lack of open, accessible implementations of the processes they define and
intermediate technologies. Take the case of the popular Yahoo pipes (O’Reilly, n.d.): when support
ended in 2015, users only option was a complex export process.

However, data analysis applications require mastery of complex systems to apply mathematical tech-
niques and represent information in non-trivial domains, and this needs to be supported by design.

2. Improving a Data Flow Visualisation
As prior research (Roast, Leitão, & Gunning, 2016; Blackwell, 2006, 2001) shows, visualisation is not
easy to represent in ways that end-users spontaneously understand. Users’, particularly novices, need
carefully designed presentation and interaction devices.

2.1. Cognitive Dimensions of Notations
Cognitive Dimensions of Notations is a framework of design heuristics (Green & Petre, 1996). The
common language it provides is frequently used to evaluate the usability of programming languages
and interfaces (Hadhrawi, Blackwell, & Church, 2017; Ennals & Gay, 2007; Morbidoni, Polleres, Tum-
marello, & Le Phuoc, 2007).

Evaluating the notations used in a complex information artefact, such as Open Piping, with this frame-
work requires a lot of judgement. As an example, let us can compare two evaluations of tools developed
on principles comparable to Open Piping.

(Morbidoni et al., 2007) propose Semantic Web Pipes, a functional language and pipe editor to prototype
semantic mash-ups; while (Green & Petre, 1996), introducing the framework in their analysis of visual
programming environments, consider two functional environments, Labview and in Prograph.

Evaluating the viscosity of their tool, the first estimate that the underlying functional paradigm guaran-
tees ’almost literally the principle of encapsulation and decoupling’. For the same dimension, Green and
Petre instead test the viscosity by attempting a minor change to test code in each of the two functional
environments, Labview and in Prograph. They choose to focus, not on the language, but on manipulating
the code at the interface, explaining that ’boxes had to be jiggled about’, and are not satisfied that the
language supports appropriate abstractions.

The list of dimensions has varied a little since the framework was proposed. Here, we use the dimensions
suggested by (Green & Petre, 1996), listed table 2 (next page).

Cognitive Dimensions provide a useful vocabulary to evaluate the usability of Open Piping, and supports
identifying its limits more precisely. Below, we propose an evaluation of Open Piping against each
cognitive dimensions.

PPIG 2020 27 www.ppig.org

Dimension Characteristic
Abstraction gradient What are the minimum and maximum levels of abstraction exposed by the

notation? Can details be encapsulated?
Closeness of Mapping Does the notation correspond to the problem world?
Consistency When some of the notation has been learnt, how much of the rest can be

inferred?
Diffuseness / terseness How many symbols (how much space) the notation requires to produce a

certain result
Error-proneness Does the notation induce user mistakes?
Hard mental operations How much do the notations impose hard mental processing?
Hidden dependencies Are dependencies visible or hidden?
Juxtaposability Is every part of the notation visible at the same time?
Premature commitment Are there strong constraints on the order in which the user must complete

the tasks to use the system?
Are there decisions that must be made before all the necessary information
is available? Can those decisions be reversed or corrected later?

Progressive evaluation How easy is it to evaluate and obtain feedback on an incomplete solution?
Role-expressiveness How obvious is the role of each component of the notation in the solution

as a whole?
Secondary notation Can the notation carry extra information by means not related to syntax

(e.g. layout, colour, or other cues?)
Viscosity How much effort is required to make a single change?
Visibility Can required parts of the notation be identified, accessed and made visi-

ble?

Table 2 – Cognitive Dimensions, after (Green & Petre, 1996).

Abstraction gradient Open Piping supports the re-use of code by creating new blocks, and of data by
setting variables. The management of these abstractions becomes difficult if the user doesn’t antici-
pate: that is, re-usable code identified late in a project needs to be redefined to set it as an (abstraction
supporting) block.

Closeness of Mapping and Consistency Consistency and Closeness of Mapping are the system’s
strongest point, as the functional model is represented faithfully by the visual objects.

Diffuseness / terseness A lot of blocks can be necessary to specify even simple computations, as each
function call and each operator is one block.

Error-proneness End-users can easily drag the wrong block, or the wrong link from output to input;
though these mistakes are easily undone.

Hard mental operations Constructs which use expressions as input (such as lambda expressions) are
very difficult to compute mentally. The number of blocks also create visual clutter and make mental
operations harder.

Hidden dependencies Blocks represent functions and operations: end-users need to be familiar with their
effect, including that of complex operations (e.g. lambda extraction).

Juxtaposability and Role-expressiveness How much of the computation is visible at the same time de-
pends on its complexity: how many blocks are in use and whether it uses any user-defined blocks.
Blocks are clearly annotated with the function they represent; the ’wires’ relating them are more easily
confused as they are not marked with information. Wires can also cross.

Premature commitment User-defined blocks are created within a separate window, and so the end-user

PPIG 2020 28 www.ppig.org

needs to plan ahead that their computation belongs in a new block.

Progressive evaluation Solutions can easily be tested throughout the development process.

Secondary notation User-defined blocks can be named by the user. Spatial positioning of blocks has no
incidence on the result and is also chosen by the end-user, although the blocks are presented with inputs
at the top-left and outputs on the right-hand side, so blocks’ disposition is intended for a top to bottom,
left to right reading order.

Viscosity Minor changes (e.g. adding a box) require a lot of adjustment; user blocks are also difficult to
redefine, as discussed above in premature commitment and abstraction gradient.

Visibility The notations are clear to end users, but the visualisation relies on a limited range of three
objects: boxes, lines, and discs marking input or output.

Cognitive Dimensions support a useful discussion to identify of the tools’ weaknesses. Following it
we propose to reduce the abstraction gradient and increase viscosity by allowing a user manipulation to
select a subtree in an expression, and make it into a custom block. But it is not always as clear how to
address the points identified through Cognitive Dimensions. To that end, we propose to turn to another
approach: Physics of Notations.

2.2. Physics of Notations
Physics of notations proposes a theory of design for notations based on maximising cognitive effective-
ness (Moody, 2009; Van Der Linden & Hadar, 2018). To that aim, it defines nine principles to analyse
and develop notations. Compared to Cognitive Dimensions, Physics of Notations ambitions to be a more
complete theory, which offers to explain why notations succeed, as well as simply describe them.

More prosaically, for this work it offers two clear advantage over cognitive notations: its principles
are focused on visual notations, and all of them offer actionable points to improve the effectiveness
of notations. Using these principles, we propose an alternative, fig. 2 which addresses many of the
weaknesses of the design identified 2.1 (next page).

Type Symbol and colour Note

Boolean Chosen to match the colour and shape of Scratch booleans

Number Match the colour and shape of Scratch numbers

String A large quotation mark

List Square brackets, as in JSON and arrays in many programming
languages

JSON data Curly brackets, as in JSON objects

Expression Expression, formed of related blocks, are needed as inputs to
some blocks, for instance lambda-extraction or conditionals

Block To allow blocks as output of and input to other blocks (in pro-
gramming terms, functions as data)

Any Used when any data type is allowable as input, for example, in
a type checking block

Table 3 – Data types used by open piping and their notational representation

Semiotic clarity recommends that all semantic constructs find a visual expression. Boxes and wires
represent input and output to functions, but data typing is an important semantic construct that should
also be made clear: identical wires give no information about the data transmitted. By associating each
main data type to a colour (for wires) and a symbol (for inputs and outputs), we express more of the

PPIG 2020 29 www.ppig.org

important semantic information within the notation. Each data type used, and the proposed colour and
shape to denote them is presented for reference in table 3 above.

Perceptual discriminability (ensuring symbols are easy to tell apart) can can be seen in table 3, where
a small number of colour and symbols are used, making them highly distinguishable. Blocks have an
identical shape, except for blocks processing expressions as discussed below, but input blocks and blocks
carrying out operations can be distinguished by colour.

Figure 2 – A workflow before (left) and after (right) revision for cognitive effectiveness

Visual expressiveness (using the fullest range of visual variables possible) point to fully exploiting visual
variables - for example, as above, with colour and shape. This can also be done by giving the blocks
that receive expressions as input, a special shape, to indicate their exceptional character - an "open jaw"
shape that can also visually include some of the expression.

Semantic transparency recommends that the appearance of notations suggests their meaning: this is done
by composing function boxes with icons for input and output parameters, and by positioning inputs at
the top or left and outputs at the bottom or right, following the common reading order.

Graphic economy is also respected as symbols remain few and easily recognised. We also propose to
allow the output symbol to glide freely around the right and bottom side of a block, and inputs around its
left and top sides - including not imposing an argument order, so that wires rarely cross over in complex
expressions, reducing visual clutter.

Complexity management is supported by encoding more information in pre-attentive ways - through
colour, size and shape. Allowing the argument inputs and output to "float" along the box’s border also
reduces complexity. The shape of blocks handling expressions as input may not reduce complexity, but
it signals it to the viewer.

Fig. 2 applies the principles of Physics of Notations to one workflow. The final three principles of
Physics of Notations are Cognitive Integration, Dual coding, and Cognitive fit, which address, respec-
tively, the coordination of documents, the use of written annotations, and the adaptation to diverse
audiences. Our proposed solution fig. 2 does not make use of these points.

3. Future work and reflection
A further evaluation will be needed to consider the effectiveness of the redesign proposed in section 2.2
above. But the two frameworks showed an interesting complementarity when using them simultane-
ously.

Cognitive Dimensions and Physics of Notations complemented each other usefully to carry out this
analysis and find design options. The Cognitive Dimensions heuristics provided insights in dynamic as-
pects of the visualisation with its dimensions of abstraction gradient and viscosity, pointing immediately
to both problem and solution. It then helped highlight many weaknesses of the design, but provided
fewer actionable points to improve it. By contrast Physics of Notations focused attention on identifiable
improvements to the visualisation. In particular, as (Roast & Uruchurtu, 2016) point out, Physics of No-

PPIG 2020 30 www.ppig.org

tations centrally asks the question: ’what constitutes and defines the semantic domain being visualised?’
(Roast & Uruchurtu, 2016). This semantic focus brought the insight that the visualised domain must
include typing, while other principles provided means to do so.

Cognitive dimensions also provides a validation of the redesign suggestions. The proposed redesign
goes some way to solving several of the most egregious problems identified with Cognitive Dimensions:
it is less error-prone, more tolerant of change, and gives important clues in support of hard mental
operations. This shows it is valuable to exploit both frameworks in combination: Cognitive Dimensions
helps consider notation abstractly and include dynamic aspects of use, while Physics of Notations focus
on visual ways of expressing meaning and on identifying that meaning to be expressed.

4. References
Blackwell, A. F. (2001). Pictorial representation and metaphor in visual language design. Jour-

nal of Visual Languages & Computing, 12(3), 223 - 252. Retrieved from http://www
.sciencedirect.com/science/article/pii/S1045926X01902071 doi: https://
doi.org/10.1006/jvlc.2001.0207

Blackwell, A. F. (2006, December). The reification of metaphor as a design tool. ACM
Trans. Comput.-Hum. Interact., 13(4), 490–530. Retrieved from http://doi.acm.org/
10.1145/1188816.1188820 doi: 10.1145/1188816.1188820

Boisvert, C., Roast, C., & Uruchurtu, E. (2019). Open piping: Towards an open visual workflow envi-
ronment. In Conference proceedings of 2019 international symposium on end-user development
(is-eud).

Ennals, R., & Gay, D. (2007). User-friendly functional programming for web mashups. In Acm sigplan
notices (Vol. 42, pp. 223–234).

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a ‘cogni-
tive dimensions’ framework. Journal of Visual Languages & Computing, 7(2), 131–174.

Hadhrawi, M., Blackwell, A. F., & Church, L. (2017). A systematic literature review of cognitive
dimensions. In Ppig (p. 3).

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., & Oinn, T. (2006). Taverna: a
tool for building and running workflows of services. Nucleic acids research, 34(suppl 2), W729–
W732.

Instruments, N. (accessed 2019). What is labview. http://www.ni.com/en-gb/shop/
labview.html. (Accessed: 2019-30-04)

Le-Phuoc, D., Polleres, A., Tummarello, G., & Morbidoni, C. (2008). Deri pipes: visual tool for wiring
web data sources.)ˆ(Eds.):‘Book DERI pipes: visual tool for wiring web data sources’(2008,
edn.).

Moody, D. (2009). The “physics” of notations: toward a scientific basis for constructing visual notations
in software engineering. IEEE Transactions on software engineering, 35(6), 756–779.

Morbidoni, C., Polleres, A., Tummarello, G., & Le Phuoc, D. (2007). Semantic web pipes. Rapport
technique, DERI, 71, 108–112.

O’Reilly, T. (n.d.). Pipes and filters for the internet. http://radar.oreilly.com/2007/
02/pipes-and-filters-for-the-inte.html. (Accessed: 2016-10-10)

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . . others
(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67.

Roast, C., Leitão, R., & Gunning, M. (2016). Visualising formula structures to support exploratory mod-
elling. In Proceedings of the 8th international conference on computer supported education (pp.
383–390). Portugal: SCITEPRESS - Science and Technology Publications, Lda. Retrieved from
https://doi.org/10.5220/0005812303830390 doi: 10.5220/0005812303830390

Roast, C., & Uruchurtu, E. (2016). Reflecting on the physics of notations applied to a visualisation case
study. In Proceedings of the 6th mexican conference on human-computer interaction (pp. 24–31).

Van Der Linden, D., & Hadar, I. (2018). A systematic literature review of applications of the physics of
notations. IEEE Transactions on Software Engineering, 45(8), 736–759.

PPIG 2020 31 www.ppig.org

Assessing a candidate's natural disposition for a software development

role using MBTI

Daniel Varona Luiz Fernando Capretz

CulturePlex Laboratory Faculty of Electrical and Software Engineering

Western University Western University
dvaronac@uwo.ca lcapretz@uwo.ca

Abstract

Over the past decade, there has been a marked interest in understanding the personal traits of

software developers and their influence on the process of assigning people to roles, as has been

evident from the growing number of related publications on this topic. This study is part of a

larger research project focussed on identifying the elements associated with the candidate´s

personal traits and how these traits better fit with particular software development roles. Our

goal in this study is to complement the current approach to assigning roles, which is based on an

individual’s capacity to fulfill a role´s functional competencies profile during the assignment

process. Our approach helps to support the assigning of people to software development roles

by providing a set of tools, based on Myers-Briggs type indicators, to assess a candidate´s

natural disposition. To do this, we modeled the results obtained in a previous study on software

developer preferences for tasks associated with software industry roles. As a result, we obtained

a set of rules to be considered at the time of assignment— relationship values between MBTI

type indicators based on preferences— and then mathematically formalized a coefficient to

evaluate the natural disposition of candidates during the allocation process.

Keywords: Software Project Staffing, Role Natural Disposition Assessment in Software

Industry, MBTI, Assigning People to Role in Software Projects, MBTI and Software Projects

Introduction

There is no doubt that the software industry is key to all spheres of society: economic, social,

political and infrastructural. Due to its wide range of applications, it is difficult to conceive of

an industrial branch without a software component. Behind that technical coverage, there is a

project team, the group of people who make it possible. Like any other industry, software needs

raw materials.

In the case of software development, the raw material is expressed as technical and non-

technical competencies, and as the communication skills required from developers, among

others, that contribute to enhancing the synergy of the team. Considering that software projects

tend to be planned in shorter periods of time each time, the synergy of the team gains a

significantly greater value. In terms of the contribution of each member to other members of the

PPIG 2020 32 www.ppig.org

mailto:dvaronac@uwo.ca
mailto:lcapretz@uwo.ca

team, the software industry is an ecosystem where the success of the projects depends chiefly on

proper role assignment and adequate project team staffing from the beginning of the project.

Over the past decade, academics have become more interested in the relationship between

natural disposition and the suitability of software development roles and have begun researching

new approaches that can complement the current process of assigning roles in software projects.

These approaches include studies on personality traits (Varona, Capretz, Piñero, & Raza, 2012)

(Varona, Capretz, & Raza, A multicultural comparison of software engineers, 2013) (Capretz,

Waychal, Jia, Varona, & Lizama, 2019) (Lizama, Varona, Warchal, & Capretz, 2020), and team

staffing (Mazni, y otros, 2016) (Aritzeta, Swailes, & Senior, 2007) based on team roles, to name

just two examples. The present research continues work done in a previous study (Capretz,

Varona, & Raza, Influence of personality types in software tasks choices, 2015) conducted by

the authors, which sought to describe the distribution of MBTI indicators among software

developers and to identify their preferences for certain software related tasks that were

historically linked to roles such as Project Leader, Analyst, Designer, Programmer, Tester, and

Maintenance related roles.

While it is true that these more defined roles are closely tied to heavy software development

methodologies, and that most projects are currently implemented following flexible

development methodologies, we must point out that in such cases roles do not dissolve but are

mixed. Ones acquiring responsibilities subscribed to other, and therefore, the needs that the role

demands of the individual who performs it remains untouched. One may acquire responsibilities

that have been assigned to another person, but the demands on the individual of the originally

assigned role remain unchanged. Therefore, the need for a proper human resources allocation

from the very beginning becomes even more important.

This study aims to identify a set of patterns based on software practitioners' preferences for

certain software tasks and the distribution of their MBTI-type indicators gathered in (Capretz,

Varona, & Raza, Influence of personality types in software tasks choices, 2015), that can be

used to model a natural disposition coefficient towards the role a candidate is given. And

together, both tools support the decision-maker while role assignment subprocess in the process

of human resources acquisition for software projects.

Method

Firstly, we converted the software practitioners’ preferences exhibited in (Capretz, Varona, &

Raza, Influence of personality types in software tasks choices, 2015) into "If - then" rules that

we then processed using R. This resulted in 1500 rules that we summarized using R features for

PPIG 2020 33 www.ppig.org

rules summarization. With the resulting set of rules, it was possible to identify a set of patterns

which are related in the Results and Discussion section.

Next, and also based on the software practitioners’ choices of software tasks and their

preference priorities over the studied roles, we determined the correlation values between the

MBTI type indicators and the studied software roles. Table 1 in the Results and Discussion

section shows the correlation values.

Lastly, taking into account the identified correlation values between MBTI type indicators and

software development roles, we proceeded to mathematically formalize a coefficient to evaluate

the natural disposition in role candidates.

Results and Discussion

Following the same order presented in the Methods section, we then proceeded to present the

patterns we had identified. Our goal is for these patterns help the decision-maker at the time of

assigning people to software development roles. For better organization we grouped the patterns

by roles, as can be seen below.

➢ To better assess a candidate’s natural disposition for the Project Leader role, the

candidate should meet the following criteria that characterize current successful

software practitioners performing as Project Leader:

o There must be a predisposition towards ST or NT mental functions

o There must be a predisposition towards EJ attitude functions

➢ To better assess a candidate’s natural disposition for the Analyst role, the candidate

should meet the following criteria that characterize current successful software

practitioners performing as Analysts:

o There must be a predisposition towards extroversion E_ _ _.

o There must be a predisposition towards an extroverted judging attitude

function _ _ _ J if it is met that IS_ _.

o There must be a predisposition towards an extroverted perceiving attitude

function _ _ _ P if it is met that IN_ _.

o There must be a predisposition towards the following mental functions1:

NT, ST, and SF; no prioritization needed between them.

o The following type indicators must be prioritized in this exact order: ESTJ,

ESTP, ISTJ, ISFJ, INTJ, ESFP, and INTP.

1 The attitude pair analysis is omitted here as it seems to tend to the IJ and that might be perceived as a

contradiction to the above stated conditions whereas is actually it harnesses the mental pairs and allow

this extroverted energizing attitude.

PPIG 2020 34 www.ppig.org

➢ To better assess a candidate’s natural disposition for the Designer role, the candidate

should meet the following criteria that characterize current successful software

practitioners performing as Designers:

o There must be a predisposition towards an extroverted perceiving attitude

function _ _ _ P if it is met that I _ T _.

o There must be a predisposition towards an extroverted judging attitude

function _ _ _ J if it is met that IS_ _.

o There must be a predisposition towards the following mental functions: NT,

ST, and SF; no prioritization needed between them.

o The following type indicators must be prioritized in this exact order: INTP,

INTJ, ISTJ, ISTP, ESTJ, ENTJ, ESTP, and ESFP.

➢ To better assess a candidate’s natural disposition for the Programmer role, the candidate

should meet the following criteria that characterize current successful software

practitioners performing as Programmers:

o There must be a predisposition towards extroversion E_ _ _.

o There must be a predisposition towards the following mental functions: ST,

and SF; no prioritization needed between them.

o There must be a predisposition towards the following attitude functions: IJ,

and EJ; no prioritization needed between them.

o The following type indicators must be prioritized in this exact order: ESTJ,

ESTP, ISFJ, ENTJ, ESFP, and ISTP.

➢ To better assess a candidate’s natural disposition for the Tester role, the candidate

should meet the following criteria that characterize current successful software

practitioners performing as Testers:

o The ISTJ type indicator must be prioritized.

➢ To better assess a candidate’s natural disposition for the Maintainer role, the candidate

should meet the following criteria that characterize current successful software

practitioners performing as Maintainers:

o There must be a predisposition towards an extroverted perceiving attitude

function _ _ _ P if it is met that ES_ _.

o There must be a predisposition towards the ST mental function.

o There must be a predisposition towards the following attitude functions: EP,

IJ, and EJ; no prioritization needed between them.

o The following type indicators must be prioritized in this exact order: ISTP,

ISFJ, ENTJ, ESTJ, ISTJ, ESFP, and ESTP.

PPIG 2020 35 www.ppig.org

Considering the patterns outlined above, we proceeded to relate the type indicators to the

functional roles under investigation, as can be seen in Table 1. The blank cells indicate that the

corresponding type indicator and functional role are not related. In contrast, the cells that denote

a relationship between the corresponding type indicators and functional roles exhibit a value

expressing the type indicator´s natural disposition coefficient for the functional role.

To find the value that expresses the natural disposition of a type indicator with respect to a role,

it was necessary to formalize a coefficient to that effect, which we call the natural disposition

(ND) coefficient. Equation I show the ND coefficient modeling:

Equation (I): 𝑁𝐷 =
𝑃𝑇

𝑇𝑃

Where PT is the number of patterns for a given role a type indicator satisfies between all

identified patterns for that role, and TP is the total number of identified patterns for the

analyzed role.

MBTI

Type

Indicators

Functional Roles

Project

Leader Analyst Designer Programmer Tester Maintainer

ISTJ 0.5 0.6 0.75 0.5 1 0.75

ISFJ 0.6 0.5 0.75 0.5
INFJ 0.25 0.25

INTJ 0.5 0.4 0.5 0.25 0.25
ISTP 0.2 0.75 0.5 0.5

ISFP 0.2 0.25 0.25
INFP 0.2

INTP 0.6 0.75
ESTP 0.5 0.6 0.5 0.75 1

ESFP 0.6 0.5 0.75 0.75
ENFP 0.2 0.25 0.25

ENTP 0.5 0.4 0.25 0.25 0.25
ESTJ 0.5 0.6 0.5 1 0.75

ESFJ 0.5 0.4 0.25 0.75 0.25
ENFJ 0.5 0.2 0.5 0.25

ENTJ 1 0.4 0.5 0.75 0.25

Table 1 Relation between the MBTI type indicators and the studied functional software roles

The ND coefficient takes values between 0 and 1, resulting in the natural disposition of the

given MBTI indicator for a given role. Consequently, the possibilities for assigning an

individual with a certain MBTI type indicator to a given role can be easily sorted and related to

the roles for which the type indicator is a better match. Table 1 itself represents a decision

matrix for each type indicator and their associated roles given its natural disposition coefficient

PPIG 2020 36 www.ppig.org

for each of them. The decision-maker can use the matrix as a tool for reference when assigning

people to roles.

Conclusions

In the present study we identified a set of patterns from the MBTI type indicators of currently

successful software practitioners performing in each of the roles studied, as well as their

preferences towards software task choices, also linked to the competence profile of the roles

studied.

Based on the patterns identified, it was possible to formalize a coefficient to assess a candidate´s

natural disposition in relation to a given software project role. This was done by considering

that candidate´s MBTI type indicator, expressed in terms of the relation between the number of

patterns the candidate´s MBTI type indicator satisfied from the total number of identified

patterns for the target role.

We defined a decision matrix connecting the MBTI type indicators with the target roles using

the values assumed by the natural disposition coefficient, which can be used by the decision-

maker as a support tool when assigning people to roles in software projects.

The new approach described in this study complements those currently available within the

specialized literature focusing on the assignment of people to roles in software development. It

also enriches the methodological framework around the assignment as an object of study in the

software engineering field of study.

References

Aritzeta, A., Swailes, S., & Senior, B. (2007). Belbin's Team Role Model: Development,

Validity and Applications for Team Building. Journal of management Studies, 44(1),

96-118.

Capretz, L. F., Varona, D., & Raza, A. (2015). Influence of personality types in software tasks

choices. Computers in Human Behavior(52), 373-378.

Capretz, L. F., Waychal, P., Jia, J., Varona, D., & Lizama, Y. (2019). Studies on the software

testing profession. 2019 IEEE/ACM 41st International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion).

Lizama, Y., Varona, D., Warchal, P., & Capretz, L. F. (2020). Unpopularity of the Software

Tester Role among Software Practitioners: A Case Study. En Advances in RAMS

Engineering. In Honor of Professor Ajit Kumar Verma on His 60th Birthday (pág. 465).

Springer International Publishing.

Mazni, O., Bikhtiyar, H., Mazida, A., Azma, Y., Fauziah, B., Haslina , M., & Norida, M. D.

(2016). Applying fuzzy technique in software team formation based on Belbin team role.

Journal of Telecommunication, Electronic and Computer Engineering, 8(8), 109-113.

PPIG 2020 37 www.ppig.org

Varona, D., Capretz, L. F., & Raza, A. (2013). A multicultural comparison of software

engineers. World Transactions on Engineering and Technology Education, 11(1), 31-35.

Varona, D., Capretz, L. F., Piñero, Y., & Raza, A. (2012). Evolution of software engineers'

personality profile. ACM SIGSOFT Software Engineering Notes, 37(1), 1-5.

PPIG 2020 38 www.ppig.org

On personality testing and software engineering

There is current interest in applying methods from the psychology of personality to software engineering.
For example, in a recent review, Graziotin et al. (2020) say,

“Software engineers are knowledge workers and have knowledge as main capital [98]. They need
to construct, retrieve, model, aggregate, and present knowledge in all their analytic and creative
daily activities [89]. Operations related to knowledge are cognitive in nature, and cognition is
influenced by characteristics of human behavior, including personality, affect, and motivation
[47]. It is no wonder that industry and academia have explored psychological aspects of software
development and the assessment of psychological constructs at the individual, team, and
organization level [30, 61]. [emphasis added.]

They are quite critical of much current work, including that using the discredited Myers-Briggs Type
Indicator (MBTI, which remains popular in the literature), and other work that attempts to adapt what the
authors feel are well validated methods from other areas of social science in ways that are scientifically
unsound. The authors then present what they see as the methods needed for sound work in the area,
emphasizing that doing the work correctly requires an enormous amount of work. They conclude,

“The software engineering community must value psychometric studies more. This, however,
requires a cultural change that we hope to champion with this paper. ‘Spending an entire Ph.D.
candidacy on the validation of one single measurement of a construct should be, not only
approved, but encouraged.’ [43] and, we believe, should also become normal.”

We are skeptical that the psychometric methods the authors advocate can usefully be applied in software
engineering. Further, we see the potential for substantial harm from efforts to apply them.

As an illustration of the issues, we’ll use the hypothetical psychometric study included as a
methodological appendix to Graziotin, et al. (2020). The study aims to illuminate “individual perception
styles of source code”:

“Our fictitious construct is the ‘individual perception styles of source code’ that, through a
literature review (or, perhaps, after a grounded theory study), we believe is mainly composed of,
or highly related, to the following five constructs: code curiosity, programming paradigm
flexibility, learning disposition, collaboration propensity, and comfort in novelty.”

Some premises of such an investigation are that there is a population of source code perceivers whose
attributes can be studied, and that these individuals have characteristics like “code curiosity” or “learning
disposition” that can usefully be measured. The nature of psychometric methods requires that
investigators have access to many members of the population to be studied.

Clayton Lewis
Coleman Institute for Cognitive Disabilities

University of Colorado
clayton.lewis@colorado.edu

PPIG 2020 39 www.ppig.org

The nature of software engineering is that it is complex in a great many different ways, that all influence
“source code perception”. What tools are being used to examine source code? What language is the code
in (how does perception of Python code relate to perception of an Excel macro)? Is the code being viewed
in the context of coding, or debugging, or testing, or maintenance? Is the perceiver already familiar with
the code base, or are they a new team member? Are they experienced or inexperienced in the particular
task being examined? Are they working individually, or in a group code review? We think it highly
unlikely that enough data could be gathered in any one of the situations defined by the cross product of
these distinctions to support a proper psychometric analysis. That is to say, undertaking a psychometric
analysis of this construct really means that one thinks that “source code perception” isn’t actually
influenced by these things in important ways.

Does this argument mean that all empirical study of phenomena as complex as software engineering is
futile? We think it does mean that empirical study that is purely empirical cannot succeed. That is,
research has to be guided by ideas about the mechanisms at work in the phenomenon, mechanisms that
can be identified in action across varying situations. Cognitive dimensions analysis is an example of a
framework that can offer that (see Lewis, 2017, for related discussion).

We have concerns about the constructs proposed as “related” to source code perception, as well. To
undertake this psychometric investigation means that one believes that things like “programming
paradigm flexibility” are stable characteristics of people. But given the complexity of software
engineering situations, and of people, we see no reason to expect that. Rather, we expect that people’s
behavior, and preferences, will be influenced by the tools they use, their past experience, their current
social environment, their personal goals, and much more. There just isn’t such a thing as “programming
paradigm flexibility” independent of these contextual factors.

We understand that the constructs in this example from Graziotin et al. are made up, so it is pointless to
argue about the specifics of them. But we agree with Graziotin et al. that they illustrate the logic of many
studies that might actually be undertaken, or have been undertaken.

An advocate of psychometric research might respond, “Well, if you are right, our studies will fail, but if
you are wrong, our studies will reveal that there really are these stable characteristics of software
engineers, with consequences that cut across the distinctions among situations that you are concerned
about. So you should let us get on with the work, and we’ll see who is right.”

Of course, people are free to investigate whatever they like, and we can’t forbid them, even if we wanted
to. But we can register our doubts that the large investments needed will prove justified. In particular, we
strongly dissent from the suggestion that “Spending an entire Ph.D. candidacy on the validation of one
single measurement of a construct should be, not only approved, but encouraged.” We would certainly not
encourage our students to do such a thing.

Our concerns go farther. The persistence of the discredited MBTI in the literature suggests that
psychometric ideas are seductive. People often want to believe that there are simple, knowable
characteristics of people that will allow us to deal more straightforwardly and objectively with our fellow
creatures. Rather than embracing human diversity, we often want to reduce people to numbers: we should
hire this candidate rather than this one, because they scored better on this assessment, or we should assign
this person this role rather than that one, because they show higher “programming paradigm flexibility”.

PPIG 2020 40 www.ppig.org

That seems easier than trying to assess their job experience. The appeal of this vision is such that it often
overrides methodological scruples, as Graziotin et al. document. The research community needs to push
back.

We think that some potential applications of psychometrics to software engineering are actually harmful,
as well as wrong, adding urgency to the push back. The belief that software engineers have stable
psychometric characteristics that we can measure, and that predict their aptitude for particular roles, leads
naturally to making decisions about hiring, or promotions, on the basis of these measurements. Indeed,
Graziotin et al. envision just these applications, and the potential for harm accompanying them:

“Improper development, administration, and handling of psychological tests could harm the
company by hiring a non-desirable person, and it could harm the interviewee because of missed
opportunities.”

For Graziotin et al., these potential harms call for proper “development, administration, and handling of
psychological tests.” But we argue that there can be no such thing as proper development and application
of such tests, because of the complexity of people, software engineering situations, and their
combinations.

Acknowledgement. I thank Luke Church for useful comments.

References

Graziotin, D., Lenberg, P., Feldt, R., & Wagner, S. (2020). Behavioral Software Engineering:
Methodological Introduction to Psychometrics. arXiv preprint arXiv:2005.09959.

Lewis, C. (2017). Methods in user oriented design of programming languages. In Proc. PPIG 2017- 28th
Annual Workshop. Online at https://ppig.org/papers/ .

PPIG 2020 41 www.ppig.org

https://ppig.org/papers/

Validation of Stimuli for Studying Mental Representations Formed by Parallel
Programmers During Parallel Program Comprehension

Leah Bidlake Eric Aubanel
Faculty of Computer Science, Faculty of Computer Science, Department of Psychology

University of New Brunswick
leah.bidlake@unb.ca, aubanel@unb.ca, voyer@unb.ca

Daniel Voyer

Abstract

Research on mental representations formed by programmers during program comprehension has not yet
been applied to parallel programming. The goal of this proposed study is to validate the stimuli that will
be used in subsequent studies on mental representations formed by expert parallel programmers. The
task used to stimulate the comprehension process will be verifying the correctness of parallel programs
by determining the presence of data races. Responses to the data race question will be analysed to
determine the validity of the stimuli. Participants will also be asked what components of the program
they used to determine whether or not there was a data race and their responses will be collected for use
in future work.

1. Introduction
In recent years, the research on program comprehension has declined dramatically and as a result, newly
developed or popularized languages and paradigms including parallel programming have not been a part
of the research (Bidlake, Aubanel, & Voyer, 2020). Parallel programming has introduced new challenges
including bugs that are hard to detect, making it difficult for programmers to verify correctness of code.
One type of bug that occurs in parallel programming is data races. Data races occur when multiple
threads of execution access the same memory location without controlling the order of the accesses
and at least one of the memory accesses is a write (Liao, Lin, Asplund, Schordan, & Karlin, 2017).
Depending on the order of the accesses some threads may read the memory location before the write
and others may read the memory location after the write which can lead to unpredictable results and
incorrect program execution. Data races are difficult to detect and verify as they will not appear every
time that the program is executed. To detect data races programmers must understand how a program
executes in parallel on the machine and the memory model of the programming language.

2. Research Goal
To date, no empirical research on program comprehension or mental representations of parallel pro-
grammers has been conducted. The lack of research in this programming paradigm means that there are
no existing data sets or stimuli to draw from. We will create a stimulus set to be used in subsequent
research on mental representations formed by parallel programmers. The research goal of the proposed
study is to validate the stimulus set.

3. Method
Given the feedback received when this proposal was presented at the PPIG Doctoral Consortium 2020,
we will be conducting a pilot study with 10 participants. The results of the pilot will be analysed to
determine if any of the parameters need to be adjusted for the validation study.

3.1. Participants
Participants will need to have experience programming in C and using OpenMP 4.0 directives to imple-
ment parallelization. One hundred participants will be recruited using social media including Facebook
and LinkedIn and email. Participants will receive a $10 gift card as an incentive; this will be administered
using Rybbon. Participants will be informed in the consent form that the incentive is only available in
select countries. Participation will be voluntary and the protocol will be approved by the research ethics
board at UNB.

PPIG 2020 42 www.ppig.org

3.2. Materials
The programs from the DataRaceBench 1.2.0 benchmark suite (Liao et al., 2017) were used as inspi-
ration for the programs written by the first two authors, who are expert programmers. The programs
will be written in C using OpenMP 4.0 directives with no comments or documentation. There will be
80 programs in total, all containing a parallel region. In our original study proposal the programs were
divided into data race and no data race categories and then subdivided into reading input from a file and
reading input from the command line. The feedback received from the doctoral consortium led us to
simplify the programs so that all data was contained within the program. Forty of the programs will
contain a data race and forty of the programs will not contain a data race. This will produce 4000 data
points per data race (40 programs x 100 participants), exceeding the power recommendation proposed
by Brysbaert and Stevens (2018) for our linear mixed model analysis.

The length of the programs will be measured by counting the lines of code. The mean length of the
programs with data races will be the same as the mean length of the programs without data races.

3.3. Procedure
Participants will complete the tasks online. The experiment will be developed using PsychoPy 3, an open
source software package, and Pavlovia will be used to host the experiment online. Qualtrics will be used
to develop and administer the consent form at the beginning of the experiment and the questionnaire at
the end of the experiment.

The stimuli will be presented to each participant in a random order. Participants will be given a time limit
of 30 seconds for exposure to the stimuli. The exposure will end when the time limit has been reached
or when the participant responds to the data race question. There were concerns raised at the doctoral
consortium regarding the exposure time and mental strain of tracing code. To address these concerns
we have ensured that variable names used in the stimuli match typical programming conventions (i.e.:
variables i, j, and k are used for loop counters) and were consistent between stimuli to reduce the mental
load (i.e.: variables used for arrays in all stimuli are a, b, and c). The stimuli were also simplified by
removing the code to read in data from either a file or the command line.

The following measures will be taken for each stimulus: correctness of response, response time, and
level of confidence in their response. Their level of confidence will be measured using a visual analogue
scale representing a 100mm line with "not confident" as the left side extreme (score of 0) and "very
confident" as the right side extreme (score of 100). Participants will click at the location of their answer
and the program will record the distance along the line (0 to 100) as the measure of confidence.

Originally we proposed to ask a summary question for a subset of the stimuli. It was suggested at the
doctoral consortium that a summary may not provide insight into the mental model of the participants.
Instead, questions that specifically elicit how participants are thinking about the code, what parts of
the code they are looking at, or what parts of the code are most relevant for the task, would provide
more information that relates to their mental representations. In response to this we decided to ask the
question "What cues or program components did you use to determine whether or not there was a data
race?" instead of writing a summary. Thirty of the stimuli will include the additional task of answering
this question. The participants will not be given a time limit for writing their answer. The question will
take place after the data race question and the level of confidence rating are completed. After finishing
the data race experiment, participants will complete a questionnaire to document their background and
level of expertise (Feigenspan, Kastner, Liebig, Apel, & Hanenberg, 2012). Specifically, they will be
asked about their: age, gender, year of study, level of education completed, years of programming
experience, number of programming courses completed, self estimated level of programming expertise
and parallel programming expertise, perceived level of programming expertise compared to their peers,
and perceived level of parallel programming expertise compared to their peers.

3.4. Analysis
The results of the pilot study will be used to determine if any parameters of the study need to be adjusted.
The exposure time and level of difficulty of the stimuli may need to be adjusted if the accuracy rate is

PPIG 2020 43 www.ppig.org

low and participants are using all of the allotted time exposure.

The participants’ responses to the question for select stimuli will be subjected to an informal analysis
as a preliminary examination of mental representations, however, the emphasis will be on stimulus
validation. The responses to the data race task will be used to validate the stimulus set. Ideally we
want to have an accuracy rate of approximately 90% for both data race types (yes, no). If the task is
too difficult we expect there will be a higher number of no responses compared to yes responses to the
data race question. We predict, with expertise as an independent variable, a positive correlation between
level of expertise and confidence and a negative correlation with response time. The variables relevant to
expertise will be used with the data race type (yes, no) as predictors in exploratory mixed linear models.

4. Conclusion
The results of the proposed study will indicate the validity of the stimulus set and provide direction
for future studies. A valid stimulus set would allow us to move forward with our research on mental
representations of expert parallel programmers.

5. References
Bidlake, L., Aubanel, E., & Voyer, D. (2020, July). Systematic literature review of empirical studies

on mental representations of programs. Journal of Systems and Software, 165, 110565. doi:
10.1016/j.jss.2020.110565

Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial.
Journal of Cognition, 1(1). doi: 10.5334/joc.10

Feigenspan, J., Kastner, C., Liebig, J., Apel, S., & Hanenberg, S. (2012, Jun). Measuring program-
ming experience. In 20th IEEE International Conference on Program Comprehension (ICPC)
(p. 73–82). IEEE. doi: 10.1109/ICPC.2012.6240511

Liao, C., Lin, P.-H., Asplund, J., Schordan, M., & Karlin, I. (2017). Dataracebench: A benchmark
suite for systematic evaluation of data race detection tools. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (p. 11:1–11:14).
ACM. doi: 10.1145/3126908.3126958

PPIG 2020 44 www.ppig.org

Purpose-first programming: Scaffolding programming learning for novices who
care most about code’s purpose

Kathryn Cunningham
School of Information
University of Michigan

kicunn@umich.edu

Abstract

Becoming “a programmer” is associated with gaining a deep understanding of programming language
semantics. However, as more people learn to program for more reasons than creating software, their
learning needs differ. In particular, end-user programmers and conversational programmers often care
about code’s purpose, but don’t wish to engage with the low-level details of precisely how code executes.
I propose the creation of scaffolding that allows these learners to interact with code in an authentic way,
highlighting code’s purpose while providing support that avoids the need for low-level knowledge. This
scaffolding builds on theories of programming plans.

1. Semantics-focused activities don’t meet the needs of certain learners
Introductory programming activities often echo the epigram “To understand a program you must become
both the machine and the program” (Perlis, 1982). Commonly-used code tracing exercises (Sorva, 2013)
ask students to simulate the execution of a program: determining the order in which lines of code run,
which values are created and modified, and when the program starts and stops. Computing education
researchers have created theoretical hierarchies of programming skills that describe code tracing as a
primary skill that students should be taught before they learn to write code or explain the purpose of
code (Xie et al., 2019).

However, for many programming learners, writing code or being able to read code and determine its
purpose are far more important than understanding code semantics. In thinkaloud interviews about code
tracing activities, I found learners who wanted to use code to solve problems but didn’t view themselves
as “a programmer” or didn’t feel they can think “like a computer”. These learners rejected code tracing
activities, describing them as in conflict with their self-beliefs (Cunningham, Agrawal Bejarano, Guz-
dial, & Ericson, 2020). At the same time, these learners expressed a value for learning about code that
solved "real" tasks, not toy problems.

2. An approach that emphasizes code’s purpose
To meet the needs of these learners, I propose purpose-first programming, an approach to learning
programming skills that starts from the user’s need for programming, rather than the demands of pro-
gramming language syntax and semantics. Instruction will focus on common programming patterns in
the domain of choice, called plans (Soloway & Ehrlich, 1984). Purpose-first programming learners as-
semble and tailor plans, so that they can write useful programs in an area of interest right away, without
needing to understand every detail of how code works.

2.1. Purpose-first programming scaffolds make programming easier
2.1.1. Code is grouped by plan
Plans are highlighted to allow learners to "chunk" (Gobet et al., 2001) programs more easily, hopefully
leading to faster problem-solving. In purpose-first programming, plans are drawn from a specific do-
main. As a result, information about the plans can be described in domain-specific terms that facilitate
the application of the plan to solve problems.

2.1.2. Plans consist of fixed code and “slots” that can contain objects or code
“Slots” are the only areas of a plan that can be changed. This decreases the complexity of editing code
and draws learners’ attention to the most important parts of code.

PPIG 2020 45 www.ppig.org

Figure 1 – Purpose-first code writing supports assembly and tailoring of plans.

2.1.3. Subgoals break plans into pieces to guide plan integration and tracing
Subgoals (Morrison, Margulieux, & Guzdial, 2015) provide a smaller unit of cohesive code, and a
subgoal label clarifies the contribution to the plan’s purpose. By tracing the input and output to each
subgoal, learners can trace purpose-first code at a higher level of abstraction.

2.2. Designing a purpose-first programming proof-of-concept
I will design a proof-of-concept curriculum that teaches five plans from the domain of web scraping with
BeautifulSoup. Learners will view examples of complete programs, learn about each plan individually,
and then write, debug, and describe code that uses combinations of plans not previously seen. Activities
will provide purpose-first scaffolds (see support for code writing in Figure 1).

2.3. How do learners describe the effect of purpose-first programming on their motivation?
2.3.1. Evaluating expectancy of success and value for tasks
I will perform semi-structured interviews with 6-12 novice programmers after they complete the
purpose-first programming curriculum. According to the Eccles Expectancy-Value Model of Achieve-
ment Choice, motivation for a task is explained by expectancy of success on the task and value for the
task (Eccles, 1983). The interviews will explore learners’ feelings of success during activities in the
curriculum, as well as expectations of success with similar learning in the future. The interviews will
also ask learners about aspects of their value for this type of learning activity, including their enjoyment,
alignment with future goals, and alignment with self-identity.

3. References
Cunningham, K., Agrawal Bejarano, R., Guzdial, M., & Ericson, B. (2020). I’m not a computer: How

identity informs value and expectancy during a programming activity. In Proceedings of the 2020
international conference of the learning sciences. International Society of the Learning Sciences.

Eccles, J. (1983). Expectancies, values and academic behaviors. Achievement and achievement motives.
Gobet, F., Lane, P. C., Croker, S., Cheng, P. C., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking

mechanisms in human learning. Trends in cognitive sciences, 5(6), 236–243.
Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, context, and worked exam-

ples in learning computing problem solving. In Proceedings of the eleventh annual international
conference on international computing education research (pp. 21–29). ACM.

Soloway, E., & Ehrlich, K. (1984, September). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-10(5), 595–609.

Sorva, J. (2013, July). Notional machines and introductory programming education. Trans. Comput.
Educ., 13(2), 8:1–8:31.

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., . . . Ko, A. J. (2019). A theory of
instruction for introductory programming skills. Computer Science Education, 29(2-3), 205–253.

PPIG 2020 46 www.ppig.org

An Analysis of Student Preferences for Inverted vs Traditional Lecture

Brian Harrington
Dept. of Computer and
Mathematical Sciences
University of Toronto

Scarborough

Mohamed Moustafa
Dept. of Computer and
Mathematical Sciences
University of Toronto

Scarborough

Jingyiran Li
Dept. of Computer and
Mathematical Sciences
University of Toronto

Scarborough

Marzieh Ahmadzdeh
Dept. of Computer and
Mathematical Sciences
University of Toronto

Scarborough

Nick Cheng
Dept. of Computer and
Mathematical Sciences
University of Toronto

Scarborough

Abstract
The benefits of inverted lectures are well documented, including improved retention and a focus on
active, student-directed learning. However, not all students prefer the inverted lecture model. In this
study, we provided students with both inverted and traditional lectures in the same introductory CS
course. Students were asked to attend both styles of lecture, and at the end of the course, they were
asked to compare the lectures to each other as well as to other course components such as assignments
and readings.

Analyzing the responses of 243 students, we found no obvious preference trend with respect to grades.
However, we did find a preference for traditional lectures among international students, as well as a very
strong preference for inverted lectures among female students.

1. Introduction
Inverted or “flipped" classrooms are very popular in large introductory computer science courses, and
have been shown to benefit students by improving engagement and focusing the classroom on student
centered learning(Horton, Craig, Campbell, Gries, & Zingaro, 2014; Strayer, 2012). However, there
are down-sides to inverted lectures as well, and the inverted lecture format may not appeal to, or be
appropriate for, all types of students(Abeysekera & Dawson, 2015; Mason, Shuman, & Cook, 2013;
Gannod, Burge, & Helmick, 2008).

In this study, we offered students a hybrid course, with both inverted and traditional lectures simultane-
ously covering the same material. Students were encouraged to attend both lecture types, but no marks
in the course were directly tied to attendance. At the end of the course, students were asked to rank
the various course components and choose those which they felt were most beneficial to their learning
experience. This gave us an opportunity to directly compare student perceptions of the lecture styles on
their own educational development.

Our initial hypothesis was that the inverted lecture model would be particularly beneficial to students
who were otherwise struggling with learning to program and finding the core content overwhelming, and
therefore that we would see a discrepancy in preference for lecture type by final course grade. We also
believed that female identifying students would be more likely to appreciate the interactive and inter-
personal nature of the inverted lectures, and that we would therefore see a corresponding preference for
inverted lectures among female students. Finally, we believed that our international student population,
who anecdotally reported having less group work and discussion based classes in their academic history,
would display a corresponding preference for traditional lecture over the inverted model.

PPIG 2020 47 www.ppig.org

We therefore have the following research questions for this study:

• RQ1: Do lecture preferences vary by course grade?

• RQ2: Is there a difference in lecture preference by gender?

• RQ3: Is there a difference in lecture preferences among international students?

To form our initial hypotheses, we used anecdotal evidence and personal opinions of the authors.

Our initial hypotheses, based on anecdotal evidence and personal experiences are as follows:

• H1: There will be a negative relationship between final course grade and preference for
inverted lectures.

• H2: Female identifying students will show an increased preference for inverted lectures.

• H3: International students will show a decreased preference for inverted lectures.

These hypotheses were validated through discussion of past experiences and anecdotal evidence among
the teaching team and teaching assistants for the course. While there was some disagreement as to the
hypothesised causes and effect sizes, particularly with respect to our international students (discussed
further in Section 5.1), there was a general agreement that these were the most likely expected outcomes.

The development of the semi-inverted course model, where students simultaneously take traditional and
inverted lectures on the same core material was also an interesting experience. Therefore, in Section
3, we provide a brief experience report of developing the course, along with some of the pedagogical
decisions and constraints that may have impacted the study.

All of the worksheets and lecture slides used in this course are available for anyone who wishes to
attempt to replicate this study, or to implement this classroom model themselves at https://uoft
.me/PPIG2020.

2. Background
The use of the inverted classroom as a method of teaching, sometimes referred to as a ‘flipped class-
room’, has increased in popularity in recent years. In 2013, 29% of higher education faculties in the
United States had implemented some form of inverted learning and 27% were planning to do so accord-
ing to (Bart, 2013). A substantial amount of existing research is available detailing the methodologies
and implementations of inverted classroom (Aliye Karabulut-Ilgu & Jahren, 2018). The modern resur-
gence of inverted classroom is largely technologically focused, with content being distributed online
(Lockwood & Esselstein, 2013).

Inverted classrooms have previously been shown to increase collaboration and discussion between stu-
dents (Herold, Lynch, Ramnath, & Ramanathan, 2012; Strayer, 2012) with an increase in active learn-
ing (Mason et al., 2013; Timmerman, Raymer, Gallgher, & Doom, 2016), and improved student out-
comes (Horton et al., 2014). There are conflicting findings on the effects of inverted lectures on student
outcomes. Some studies have found that students in inverted lectures outperform those in traditional
classrooms (Ossman & Warren, 2014; Schmidt, 2014; K. Yelamarthi & Drake, n.d.), some found no
significant difference (B. Love & Swift, 2014; Mason et al., 2013; Olson, 2014; Swift & Wilkins, 2014;
S. B. Velegol & E.Mahoney, 2015), while a few showed that the inverted classes had worse outcomes
(J. P. Lavelle & Brill, 2013; Mcclelland, 2013). Inverted lectures introduce some challenges to both
instructors and students. A common component of the modern flipped classroom is the distribution of
online video lessons covering course content. The increased technical requirements of online videos can
add significant overhead to course preparation for the first semester that the course is taught (V. Kalavally
& Khoo, 2014; Gannod et al., 2008), but subsequent semesters would have reduced course preparation

PPIG 2020 48 www.ppig.org

https://uoft.me/PPIG2020
https://uoft.me/PPIG2020

time (Herold et al., 2012). Creating high quality videos is time consuming (Stephenson, 2019) and poor
quality or inappropriate length videos can have a negative impact on student engagement (Olson, 2014).
The inverted lecture can also result in increased interaction demands during the course (R. M. Clark &
Besterfield-Sacre, 2014).

Some research has pointed to issues regarding motivation in inverted classrooms. Since the effectiveness
of the model is reliant on students completing pre-class assigned work, more time is required for students
to watch videos or complete readings prior to lecture, which causes problems for students with poor
motivation or time management skills (Abeysekera & Dawson, 2015). Many inverted classroom models
use quizzes at the beginning of lecture as a means of forcing students to arrive prepared (Toto & Nguyen,
2009). However, this can lead to increased student anxiety, a diminished sense of trust and a sense of
patronizing (Herold et al., 2012; Mason et al., 2013). Some research has shown that students who
are used to traditional lecture structures can be resistant to accepting an inverted model, particularly if
they arrive from a cultural context where classroom interactivity is less common (Gannod et al., 2008;
A. Amresh & Femiani, 2013; Bland, n.d.).

3. Course Structure and Development
In this section, we provide the details of our hybrid model alongside a brief pedagogical explanation of
the reasoning behind its development.

The initial goal of our hybrid lecture model was to create a way to run our lectures that had some of the
benefits of the flipped classroom, but with a lower barrier to entry. In particular, we wished to see if it
was possible to achieve some of the self-direction and student focused learning aspects of an inverted
lecture without making major changes to the logistics of the course or needing to develop large amounts
of online resources.

A secondary desire was to keep as much of the experience ‘in-the-room’ as possible, as The University
of Toronto Scarborough already has a large commuter community, and we wanted to keep the students
focused on being physically present in the classroom, without feeling like they were really working
remotely and only coming to class for administrative purposes.

A third goal of the project was to develop a teaching model that was not overly paternalistic; many
inverted classroom models have marks awarded for attendance or mandatory in-class quizzes that pri-
marily serve to ensure that students come to lecture. While this may be beneficial for many students,
our teaching team felt that students should be treated as adults, and be given as many opportunities as
possible to choose their own method of learning and level of commitment.

Prior to the project, the course consisted of three hours of lecture per week, organized into a two hour
and a one hour block, on different days of the week. There were also one hour weekly tutorials, run
by undergraduate teaching assistants, and drop in practical sessions where students could get help with
weekly exercises or class material. The course had two term tests and a final exam as well as three larger
programming assignments, weekly exercises and quizzes held in tutorial.

For the hybrid model, we converted one hour of lecture time to an inverted model. So students would
still receive two hours of traditional lecture, unchanged from previous course offerings, aside from a
reduced amount of live coding examples. The inverted hour covered material from the previous week
(this was necessary as some course sections had their 1 hour block earlier in the week than their 2 hour
block), and consisted of worksheets that were handed out at the beginning of the hour, and submitted
electronically via the MarkUs submission system(Magnin et al., 2012). Each worksheet was worth 0.5%
(10 weekly worksheets for a total of 5% of the course grade).

Attendance was not taken in either lecture, and it was possible for students to complete the worksheets
without attending the inverted lecture. However, students were informed that sufficient help would be
offered during the inverted lecture to guarantee that if they attended and worked during the hour, they
would receive full marks on the worksheet. Furthermore, several of the worksheets were specifically

PPIG 2020 49 www.ppig.org

Implement the program outlined on your specification page. Your
code must consist of at least one function which raises exceptions
for bad input, and global code which calls the function(s) and
deals with bad input appropriately. When you think you have
everything working properly, swap with your partner, and see if
you can find test cases that break their code. If your partner found
a test case that breaks your code, fix your code so that it passes
the test case. Repeat as necessary until you can’t find any more
errors. If you still have time remaining, challenge your partner to
add extra functionality.

Figure 1 – Example Worksheet Prompt

designed for group work with a think-pair-share model. An example prompt for such a worksheet can
be found in Figure 1.

Both traditional and inverted lectures were taught by the same teaching team, with students randomly
assigned to lecture sections.

4. Analysis
At the end of the semester, students were asked to pick the top three course components that they found
most beneficial to their learning experience, and to rank those components. We had administered a
similar survey at the end of the previous year. The survey was completed online in the final week of the
term in exchange for a bonus mark on the final exam.

The options available to students were:

• Reading - weekly online readings which were assigned

• Practicals - drop in practical sessions where students could complete weekly exercises, or get help
with other programming questions

• Tutorials - weekly in-class tutorials, led by TAs, reviewing topics covered in lecture

• Assignments - three large programming assignments spread throughout the term

• Exercises - weekly programming questions, submitted online and auto-marked

• Inverted Lecture

• Lecture

In the 2015-16 version of the survey, the options were the same except that Inverted Lecture/Worksheet
was not available for obvious reasons.

We developed a simple model to compare the results of these surveys, whereby the highest ranked
component was given a score of 3, the second highest was given a score of 2 and the third highest a
score of 1. Cumulative totals for each component were then computed, and compared as a percentage
of total marks allocated.

This “pick your top three" method of relative evaluation was chosen rather than either directly ques-
tioning the students as to their preference for traditional or inverted lectures in order to be compatible
with previously collected data, and to avoid leading or biasing questions. In pre-study evaluations with
a different student group, we found students to be very susceptible to the wording of direct questions:
“Did you prefer inverted lectures to traditional ones" vs “Did you prefer traditional lectures to inverted
ones", and providing students with a likert scale resulted in most students giving the same or very similar
results for all course components.

PPIG 2020 50 www.ppig.org

Table 1 – Participant Demographics

Total Count Percentage
Total Participants 243
Gender
Female 61 25.1%
Male 154 63.4%
Other/Did not specify 28 11.5%

Student Status
Domestic 104 42.8%
International 115 47.3%
Unknown 24 9.9%

4.1. Demographics
Out of a total of 264 students enrolled in the course, 243 agreed to participate in this study. 154 students
identified as Male, 61 as female, and 28 chose not to specify. 104 of the students were registered as
domestic students while 115 were registered as international, 24 students registration status could not be
determined. The demographics are summarized in Table 1.

This study did not include racial demographics, but the department’s international student cohort overall
was drawn 65% from China, 12% from other Asia Pacific countries, 6% from India/Pakistan, 5% from
Europe, 6% from other countries in the Americas and 2% from Africa.

4.2. Comparison with Historic Data
A comparison of the point allocation for the course offered prior to the commencement of the project
and for the improved semi-inverted version of the course can be found in Figure 2.

Figure 2 – Student survey results for traditional and semi-inverted offerings

While lectures were always a popular course element, second only to weekly exercises in terms of per-
ceived learning benefit, the inverted lectures immediately became the most popular component, beating
out both the traditional lectures and exercises.

Of particular interest is where the points now allocated to the inverted lecture appear to have come from.
It would be natural to assume that the points previously allocated to lecture would now be split among
the lecture and inverted lecture options. However, it seems that the points allocated to lecture remained
relatively constant, whereas the points allocated to assignments dropped significantly and those allocated

PPIG 2020 51 www.ppig.org

Figure 3 – Student survey results by final course grade

to readings dropped drastically. While it is possible that the assignments points were due to different
assignments being used in the two years, the readings were kept constant.

We cannot draw any strong conclusions from the differences between preferences in the two cohorts, due
to the course changing and shifting student preferences and attitudes over time. However, comparing
the results of our survey to that of previous data indicates that the changes in preferences are likely due
to the change in teaching model. Furthermore, this process does provide some insight into the changes
in relative perceived importance of various course components.

4.2.1. Course Outcomes and Grades
Due to the difference in the final examination and assignment questions, it was not possible to directly
compare course outcomes between the two years. The averages and grade distributions were not sig-
nificantly different. However, since the graded material and grading scheme changed between years, a
direct comparison is not helpful.

4.3. Sub-Group Analysis
While knowing the overall perceived benefits of the inverted lectures is interesting, we wanted to analyze
further in order to see if the distributions changed for various sub-groups.

4.3.1. Course Grade
We first checked the distribution of preferences by final course grade. As shown in Figure 3, the inverted
lecture appears to be least popular among students at the lower and higher ends of the grade spectrum
(those with final marks below 50 or above 80), and more popular with students in the middle of the
spectrum. The opposite effect is seen for the traditional lecture, where students in the middle of the grade
spectrum responded less favourably than their counterparts. However, this result was not statistically
significant, and does not appear to follow any clear trend. We therefore conclude that there was no
evidence of a relationship between lecture preference and course outcome (χ2 = 13.9432, d f = 24,
p = 0.9479).

4.3.2. International vs Domestic Students
We next separated the data by international and domestic students. As seen in Figure 4, it appears that
domestic students believed the inverted lecture was more beneficial than the traditional lectures, their
international peers had the opposite opinion.

PPIG 2020 52 www.ppig.org

The differences between the two groups was not large, and after performing a Pearson’s chi-squared test
with Yates’ continuity correction based on the number of students putting inverted lecture in their top
three components, we found no statistically significant difference (χ2 = 0.061719, d f = 1, p = 0.8038).

Figure 4 – International vs domestic student survey results

4.3.3. Gender
Grouping the data by gender produced very interesting results, as can be seen in Figure 5. Most of the
course components were fairly closely ranked, but the traditional lecture was perceived as more helpful
by male students, with the inverted lecture being ranked much more highly by female students. 62.3%
of female students had inverted lecture as one of their top three components, compared to only 42.9% of
males. Running a Pearson’s chi-squared test with Yates’ continuity correction based on the number of
students putting inverted lecture in their top three components showed that there was in fact a statistically
significant difference (χ2 = 5.8551, d f = 1, p = 0.01553).

5. Conclusions and Future Work
In this study, we analyzed the student preferences for traditional vs inverted lectures. By developing a
hybrid model which allowed students to simultaneously participate in both lecture types, covering the
same core material, we were provided with a unique opportunity for direct comparison.

We found that students overall found the inverted lectures useful, pushing readings and assignments out
of many of their top three course components. And while there was not conclusive data of the effect of
the introduction of these lectures on student outcomes, that was beyond the scope of this project, and
has been well studied elsewhere.

As for our primary research questions, we found the following results:

• RQ1: Do lecture preferences vary by course grade?
While there were slight differences in preference at various grade levels, there was no clear pattern,
and the results were not statistically significant. We must therefore conclude that there is no
evidence of a correlation between course grade and lecture preference.
H1: Our hypothesis was not supported.

• RQ2: Is there a difference in lecture preferences among international students?
International students did show more of a preference for traditional lecture, while domestic stu-

PPIG 2020 53 www.ppig.org

Figure 5 – Male vs female student survey results

dents ranked inverted lectures higher. However, this result was not found to be statistically signif-
icant.
H2: Our hypothesis was not supported.

• RQ3: Is there a difference in lecture preference by gender?
There appears to be a quite large and statistically significant difference in preferences by gender,
with females showing a marked preference for inverted lectures over the traditional model, while
their male colleagues showing a slight trend in the opposite direction.
H3: Our hypothesis was strongly supported.

In addition to allowing for interesting research findings, the hybrid model appears to have achieved its
original goal of allowing for a low barrier to entry method for obtaining many of the benefits of inverted
classrooms, without many of the drawbacks. We intend to maintain this hybrid model in future and hope
to replicate this study, while improving the learning experience of our students.

5.1. Threats to Validity
This experiment was conducted on a single cohort of students at a single institution. Therefore the results
should not be assumed to extrapolate to a global context without further research.

Reasonable attempts were made to control relevant variables in the course. The teaching team remained
constant, with the same instructor teaching both sets of lectures with the same material in both the
experimental and comparison years. However, it is entirely possible that some of the results could be
attributable to the course or the instructors themselves. While we have provided all our course materials
at the link given in the introduction, it is entirely possible that these results are indicative of preferences
for our particular method of running inverted lectures, and would have been different for a different
teaching team or lecture setup.

We have identified several threats to the validity of the study, which could also be the basis for future
studies with more clearly refined controls.

Validity of Survey Results:
The primary purpose of the survey was to ask for student feedback in order to improve the course. While
it is reasonable to assume that students would want to respond honestly, as it may affect future courses
during their time at the university, it is possible that students could answer dishonestly.

PPIG 2020 54 www.ppig.org

Comparison across Cohorts:
Comparing survey results of the 2017-2018 cohort with those of the 2015-2016 cohort is naturally prob-
lematic as this is not a controlled environment, and it is possible that shifts in the student body or course
instruction could have a major impact on the result we see in Figure 2. In future studies, we would like
to more closely control for these factors and see if the results replicate.

Treating International Students as a Single Demographic Group:
This was a very contentious matter among the research team, as we only had authorization to collect
international student status, and not more salient information such as country of origin, level of English
proficiency, or pedagogical history. We ultimately decided to report on this data, because we had heard
many anecdotal reports that our international student body, especially those from China and Asia-Pacific
(who make up 77% of our international students), do not like inverted models. In future studies, we
would like to produce a much more nuanced survey, focusing less on fee status, and more on linguistic
and pedagogical history.

Survey Design - Using perceived benefit as a proxy for preference.
There are limitations to our “pick your top 3” model. However, it was chosen to be consistent with
previous data, and to be as simple and easy to answer as possible. We report our results as preference,
while the question itself asks which components students felt benefited them the most. In future studies,
we could split this question to specifically ask which components students enjoyed most and which they
felt they learned from the most, as it’s possible those two concepts are not directly linked.

Many of these threats to validity come from the simple fact that the primary goal of this project was to
obtain naturalistic feedback on a pedagogical development. While all reasonable precautions were taken
to ensure threats were mitigated, pedagogical development was our main concern. Future work will be
needed in order to validate these results. However we feel that this work provides a model for future
study and an interesting data point providing evidence of a difference in gender preference.

5.2. Data Availability
All of the relevant material for this project can be found at https://uoft.me/PPIG2020.

6. References
A. Amresh, A. C., & Femiani, J. (2013). Evaluating the effectiveness of flipped classrooms for teaching

cs1. In Proceedings of frontiers in education conference (p. 733–735).
Abeysekera, L., & Dawson, P. (2015). Motivation and cognitive load in the flipped classroom: definition,

rationale and a call for research. Higher Education Research & Development, 34(1), 1-14.
Aliye Karabulut-Ilgu, N. J. C., & Jahren, C. T. (2018). A systematic review of research on the flipped

learning method in engineering education. British Journal of Educational Technology, 49(3),
398–411.

Bart, M. (2013, November). Survey confirms growth of the flipped classroom
(https://www.facultyfocus.com/articles/blended-flipped-learning/survey-confirms-growth-of-
the-flipped-classroom/ No. Last Accessed: 23-04-2019).

Bland, L. (n.d.). Applying flip/inverted classroom model in electrical engineering to establish life-long
learning. In Proceedings of asee annual conference & exposition.

B. Love, N. G., A. Hodge, & Swift, A. W. (2014). Student learning and perceptions in a flipped linear
algebra course. International Journal of Mathematical Education in Science and Technology, 45,
317–324.

Gannod, G. C., Burge, J. E., & Helmick, M. T. (2008). Using the inverted classroom to teach software
engineering. In Proceedings of the 30th international conference on software engineering (pp.
777–786). New York, NY, USA: ACM.

Herold, M. J., Lynch, T. D., Ramnath, R., & Ramanathan, J. (2012, Oct). Student and instructor
experiences in the inverted classroom. In 2012 frontiers in education conference proceedings
(p. 1-6).

Horton, D., Craig, M., Campbell, J., Gries, P., & Zingaro, D. (2014). Comparing outcomes in in-

PPIG 2020 55 www.ppig.org

https://uoft.me/PPIG2020

verted and traditional cs1. In Proceedings of the 2014 conference on innovation & technology in
computer science education (pp. 261–266).

J. P. Lavelle, M. T. S., & Brill, E. D. (2013). Flipped out engineering economy: Converting a traditional
class to an inverted model. In In a. krishnamurthy & w. k. v chan (eds.), proceedings of the 2013
industrial systems engineering research conference (p. 397-407).

K. Yelamarthi, S. M., & Drake, E. (n.d.). A flipped first-year digital circuits course for engineering and
technology students. IEEE Transactions on Education, 58, 179–186.

Lockwood, K., & Esselstein, R. (2013). The inverted classroom and the cs curriculum. In Proceeding
of the 44th acm technical symposium on computer science education (pp. 113–118). New York,
NY, USA: ACM.

Magnin, M., Moreau, G., Varoquaux, N., Vialle, B., Reid, K., Conley, M., & Gehwolf, S. (2012).
Markus: An open-source web application to annotate student papers on-line. In Asme 2012 11th
biennial conference on engineering systems design and analysis (pp. 301–307).

Mason, G. S., Shuman, T. R., & Cook, K. E. (2013, Nov). Comparing the effectiveness of an inverted
classroom to a traditional classroom in an upper-division engineering course. IEEE Transactions
on Education, 56(4), 430-435.

Mcclelland, C. J. (2013). Flipping a large-enrollment fluid mechanics course—is it effective? In
Proceedings of the 120th asee annual conference & exposition.

Olson, R. (2014). Flipping engineering probability and statistics—lessons learned for faculty consider-
ing the switch. In Proceedings of the 121st asee annual conference & exposition.

Ossman, K. A., & Warren, G. (2014). Effect of flipping the classroom on student performance in first
year engineering courses. In Proceedings of the 121st asee annual conference & exposition.

R. M. Clark, B. A. N., & Besterfield-Sacre, M. (2014). Preliminary experiences with “flipping” a facility
layout/material handling course. In Proceedings of the 2014 industrialand systems engineering
research conference.

S. B. Velegol, S. E. Z., & E.Mahoney. (2015). The evolution of a flipped classroom: Evidence-based
recommendations. Advances in Engineering Education, 4, 1-37.

Schmidt, B. (2014). Improving motivation and learning outcome in a flipped classroom environment. In
Proceedings of 2014 international conference on interactive collaborative learning (p. 689–690).

Stephenson, B. (2019). Coding demonstration videos for cs1. In Proceedings of the 50th acm technical
symposium on computer science education (pp. 105–111).

Strayer, J. F. (2012). How learning in an inverted classroom influences cooperation, innovation and task
orientation. Learning environments research, 15(2), 171–193.

Swift, T. M., & Wilkins, B. J. (2014). A partial flip, a whole transformation: Redesigning sophomore
circuits. In Proceedings of 120th asee annual conference & exposition.

Timmerman, K., Raymer, M., Gallgher, J., & Doom, T. (2016, Aug). Educational methods for inverted-
lecture computer science classrooms to overcome common barriers to stem student success. In
2016 research on equity and sustained participation in engineering, computing, and technology
(respect) (p. 1-4).

Toto, R., & Nguyen, H. (2009, Oct). Flipping the work design in an industrial engineering course. In
2009 39th ieee frontiers in education conference (p. 1-4).

V. Kalavally, C. L. C., & Khoo, B. H. (2014). Technology in learning and teaching: Getting the right
blend for first year engineering. In Proceedings of 2014 international conference on interactive
collaborative learning (p. 565–570).

PPIG 2020 56 www.ppig.org

Exploring the Coding Behaviour of Successful Students in Programming by
Employing Neo-Piagetian Theory

Natalie Culligan

Department of Computer Science

Maynooth University

natalie.culligan@mu.ie

Kevin Casey

Department of Computer Science

Maynooth University

kevin.casey@mu.ie

Abstract
We have collected data from approximately 300 students in their third-level first year Introduction to

Programming module as they learn to write code using our in-house pedagogical coding environment,

MULE. This data includes performance in lab exams and pseudocode questions, and data on code

compiled, code run, and code evaluated, which we call CRE data. Evaluations are automatically graded

and feedback is provided to students on their code. The student can only evaluate their code in the

scheduled lab place and times but can evaluate as many times as they wish without penalty. The

pseudocode questions are used to examine the students’ understanding of programming concepts, by

removing the use of the compiler and comparing their performance in pseudocode questions to CRE

data. Using a Neo-Piagetian framework, we examine pseudocode performance, lab exam performance

and programmer behaviour in terms of CRE data. We investigate CRE data as signs of a student’s

progression through the three stages of Piagetian understanding and build a series of Deep Neural Net

binary classifiers to test if this passively collected behavioural data can be used to detect students in

danger of failing.

1. Introduction

Computer Science has one of the highest failure and dropout rates in 3rd level education

(Bennedsen, & Caspersen, Corney et al. 2010, Lang et al., Watson & Li). In this paper, we will

investigate if students in introductory computer science courses are failing to reach the later stages of

Neo-Piagetian understanding, and if we can investigate and observe signs of these stages through

passive data collection, and the results of pseudocode tasks in the weekly practical coding labs. The

research question for this study is:

▪ Can we observe signs of progression through the Neo-Piagetian stages of learning by

examining passively collected data on students’ coding behaviour?

The coding behaviour data we discuss in this paper is the order in which students compile, run,

and evaluate their code. Evaluation provides the student with automatic grades and feedback. The

students use the pedagogical coding system MULE to complete their weekly coding tasks. In this

system, students are unable to run their code until they have successfully compiled and cannot evaluate

their code until it has run successfully.

In the doctoral thesis “Neo-Piagetian Theory and the Novice Programmer” (Teague), the author

states that “Programming competence requires abstract reasoning skills and learning to program is

about the sequential and cumulative development of those abstract reasoning skills in an unfamiliar

domain.” We wanted to introduce pseudocode questions into our first-year curriculum to encourage

students to build mental models of programming concepts by requiring students to predict code output,

without relying on the compiler. These pseudocode questions are English language representations of

code that cannot be run with a compiler but represent programming concepts such as loops and arrays

(Lopez et al.). With pseudocode, we can see if the students can abstract the concepts away from Java

and apply what they have learned in class in a much more generalised way. This is useful as if the

PPIG 2020 57 www.ppig.org

students are able to do so, they are more likely to be able to reuse the skills and apply them in a variety

of ways, instead of memorizing and replicating techniques they have used in the past.

In this paper, we will discuss our findings when investigating CRE data in weekly labs as

students graduate from random/loosely guided “tinkering” to more intentional code-writing. While

previous work has discussed “tinkering” as a viable method of learning programming, we will discuss

if this is true throughout the first semester, or if CRE data that implies an over-use of tinkering is in fact

an indication that a student is not developing a good mental model of fundamental programming

concepts and is therefore in danger of falling behind.

2. Related Research

2.1. Student Behaviour when Learning to Code

There have been numerous studies that investigate novice programmer behaviour such as

patterns of compilation and running of code and how it relates to student success.

Perkins et al., investigate the different strategies that novice programmers adopt when learning

to code, and describe what they term “stoppers”, “movers”, and “extreme movers”. “Stoppers” are

novices who, when faced with a problem without a clear course of action, stop attempting to find a

solution to the problem and appear to be unwilling to explore the problem any further. “Movers” are

novices who will constantly modify and test their code when faced with a problem. “Extreme Movers”

will also constantly modify and test their code but are different from movers in that they do not seem

to learn from attempts that previously did not work, and they do not continue to work on solutions that

fail the first time so do not end up “homing in” on a working solution. The authors do not specifically

speak about how these different patterns relate to compilation and run behaviour, but the below papers

do touch on it in direct reference to this study.

Two papers on the programming environment BlueJ (Jadud, 2005, Jadud 2006) discuss the

behaviours of the authors’ students, and how similar their students’ behaviours are to those in the above

Perkins et. al. paper. They discuss their own “extreme movers”, which they describe as “tinkerers”, and

how these students would sometimes allow their experimental code to accumulate, causing their code

to become increasingly complex and, eventually, incomprehensible. The BlueJ studies found that 24%

of all compilation events followed less than 10 seconds after a previous compilation, and half of all

compilation events occurred less than 40 seconds after a previous compilation. Students spent more

time working on their code after a successful compilation than they did trying to fix a syntax error. The

authors found that students tend to program in large blocks, then spend time writing and compiling code

in small bursts in order to fix syntax errors. Accordingly, multiple compilations may indicate a large

number of syntactic problems.

In “Studying the Novice Programmer” (Soloway & Spohrer) the authors discuss the need for

students to build plans. As mentioned above, students who tinker aimlessly create bugs, and without

clear goals may fail to progress towards a working solution. The authors used natural language to

investigate if students with plans, broken into small tasks, are more successful when programming.

In “Analysis of Code Source Snapshot Granularity Levels” (Vihavainen) the author discusses

the ratio of “snapshots to submissions”, where a snapshot is a copy of the code taken every time the

student saves, compiles, runs, or tests their code. Submissions are final versions of a program submitted

for correction/grading, provided by a plugin for NetBeans that provides feedback and grading to the

student. Using a Wilcoxon rank sum test, the authors found a statistically significant difference between

the number of runs and tests for students with previous programming experience and those without.

This difference continued to be visible throughout the course, although the behaviour of the participants

was more alike in the final weeks of the course, perhaps implying that these behaviours are indicators

of programming proficiency.

One of the research questions in the paper “Evaluating Neural Networks as a Method for

Identifying Students in Need of Assistance” (Castro-Wunsch) is “Are neural network (NN) models

appropriate for the task of identifying students in need of assistance?” The authors found that, yes,

PPIG 2020 58 www.ppig.org

neural networks predicted at-risk students at least as well as Bayesian and decision tree models, and

had the advantage of being “pessimistic”, meaning that the neural networks were more likely to

incorrectly classify students as at-risk, rather than incorrectly classify students as not at-risk. From this

research, we decided to use neural networks as our classifier.

2.2. Neo-Piagetian Theory and Abstraction in Programming
There are also a number of studies that use Neo-Piagetian theory in examining student

behaviour in computer science and discuss abstraction in relation to novice and expert programmers.

In “Concrete and Other Neo-Piagetian forms of Reasoning in the Novice Programmer”,

(Lister) the author discusses the reasoning behind the use of Neo-Piagetian theory. Classical Piagetian

theory considers the progress through different stages of learning to be a consequence of a biological

maturing of the brain. Neo-Piagetian theory, on the other hand, considers this instead a result of

gaining experience, and in particular, the ability to “chunk” knowledge within a certain knowledge

domain.

Corney et. al (2011) describe a study in which almost half of the sample students were unable

to answer a simple explain-in-plain-English question in the third week of their introductory

programming course, showing that students were encountering problems much sooner than could be

detected by traditional programming questions/examinations.

In “Neo-Piagetian Theory and the Novice Programmer” (Teague, 2015), the author found that the

development of programming skills is both “sequential and cumulative”, and that behaviours

associated with sensorimotor and preoperational reasoning are evident from very early in the

semester.

The authors of “Mired in the Web: Vignettes from Charlotte and Other Novice Programmers”

(Teague et al.) ask if a student can have different levels of ability for different tasks which test similar

programming concepts – if a student can trace and understand code, can they also write that code?

They also ask why some students do not seem to be able to understand code with abstractions and

instead rely on tracing code with specific values. The study found that students who were still

operating at the sensorimotor level in week 2 were often still operating the same way in week 5, and

were lagging behind students who were operating at the preoperational level in week 2. They defined

students in the preoperational stages by certain behaviours which they observed using think-aloud

data from students. Preoperational behaviours were guessing, a fragile grasp of semantics, confused

use of nomenclature, an inability to trace simple code, as well as general misconceptions. Errors due

to cognitive overload and reluctance to trace were considered behaviours associated with both

sensorimotor and preoperational. The ability to trace but not explain code, as well as a reliance on

specific values, were signs of the preoperational stage. The authors note that students may achieve

marks for guessed answers, but it is not until they listen to the students speak aloud their thought

process that they were able to get a clear picture of the students understanding and ability.

Shneierman and Mayer found that expert programmers were able to recall more of a program

than novices when it was presented to them in normal order, but not when it was scrambled, implying

that the experts were able to “chunk” information together when the code made sense. The authors

proposed that experienced programmers construct functional representations of computer programs.

Adelson found that expert programmers’ memory chunks tended to be semantically or

functionally related, while novices typically chunked by syntax. Semantic knowledge consists of

programming concepts that are generalized, and independent of programming language, whereas

syntactic knowledge is more precise and rooted in exact representations of concepts in specific

programming languages. For example, a novice may think of a loop as a specific for loop in Java, but

an expert planning a piece of code may simply think of a loop abstractly, as something that performs a

needed function, without thinking about the exact type of loop, the details of the iteration, or the syntax

associated with it (Bisant & Groninger, Wiedenbeck).

3. Methodology
For this study, we collected data from around 300 students as they completed their introduction

to programming module in Java using MULE, our in-house, browser-based pedagogical coding

environment (Culligan & Casey). This system resembles a desktop with both built-in applications for

content and assignment delivery, and a code editor for completing, running, and evaluating code for

PPIG 2020 59 www.ppig.org

assignments. MULE also includes mechanisms for making sections of the material invisible to some

users until some constraints are satisfied such as date/time and IP address – this was used to allow

certain assignments to only be accessible in the scheduled lab times and locations. Within MULE, each

attempt the student makes on an assignment is recorded, and the student can easily recover any previous

attempt, allowing the student to “tinker” and experiment with their code without fear of losing any

work. There is evidence to suggest that a certain amount playing/tinkering with code is an indication of

student success (Berland et al., Berland & Martin).

For 5 of the 10 mandatory computer lab sessions during the first semester of their computer

science course, students were asked to predict the outcome of pseudocode snippits, along with their

usual lab consisting of two programming questions, and some peer-programming tasks. The students

were told that they are not awarded any marks towards their continuous assessment for answering the

pseudocode questions. The students have access to most of the programming tasks before the lab and

can write code, compile, and run it, but not evaluate it for continuous assessment grades. Some of the

exercises are only accessible in the labs at the assigned times, so students must write, run, compile, and

evaluate the code in the lab.

Although students were able to work on an assignment before assigned lab times, we chose to

look exclusively at the data from lab times. Our reasoning is that students outside of labs can be in very

different environments – some may have a quiet place to work undisturbed, others may be working in

a noisy environment or may be frequently interrupted, so comparisons of their behaviour may be less

insightful than those from a formal lab. For most of the semester, the students can only evaluate from

inside the lab during the specified lab times, so the data from outside the labs would only have compile

and run events.

We did not include data from students who did not participate in the weekly labs (missing more

than four), as we wanted to investigate changes in behaviour from week to week and to look at at-risk

students who are actively engaging in the course labs on a weekly basis (Castro-Wunsch). After

removing students who did not complete 4 or more labs, we were left with 266 subjects. The gathered

data is the patterns of student compile, run and evaluate actions:

• Compile: Students cannot run their code until it compiles successfully

• Run: Students cannot evaluate their code until it runs successfully

• Evaluate: The student’s code is assigned a grade, and feedback is provided.

This data was used to build Deep Neural Net binary classifiers, that would classify students as

being in either the top 50% or the bottom 50% of the class lab exam grades on a week-to-week basis.

Each weekly classifier would use the CRE data for each assignment for that week, and from all previous

weeks. Below we discuss the results of statistical tests exploring correlations between student behaviour

and outcome, and the classifier built to predict student outcome.

4. Analysis
When analysing the data, for every time a student performs a CRE action, we look at that action

and the one before and record it as a “movement” - the student moves from a Compile to a Run, is

recorded as C2R, or a Run to an Evaluate in R2E for example. When processing this data, we looked at

each movement as a percentage of all actions a student took during that lab. From the previous studies

on programming and Neo-Piagetian stages, we expected to see the following as signs of progression

through the stages:

Sensorimotor Stage: Interacting almost randomly, with little understanding of the outcome, resulting

in more C2C movements, less C2R movements and less participation and success with pseudocode

questions.

Preoperational Reasoning Stage: The student is beginning to master writing compilable code, and can

predict code outcome, resulting in higher amount of C2R movements and R2C movements, fewer C2C

movements and more participation and success with pseudocode questions.

PPIG 2020 60 www.ppig.org

Concrete Operational Stage: At this stage, programmers have a good grasp of concepts allowing the

programmer to write more complex code, resulting in fewer C2C movements, fewer C2R movements,

more R2E movements and more participation and success with pseudocode questions.

The students in the study were divided into two groups: those in the top 50% of the class in lab

exam grades, and those in the bottom 50%. The two data sets contain the percentages of total movements

per week for each student. A sample of the student data for a week would look like the following:

C2C C2R R2C R2R R2E E2C E2R E2E

0.33997 0.254913 0.127186 0.01639 0.130208 0.111902 0.003655 0.004159

Table 1: Example of an average sample of student weekly data

The following tests were then run on the two data sets:

• To examine if the differences between the two groups were significant, t-tests were

used.

• Linear regression was used to find which movements were most related to lab exam

outcome, on a week-to-week basis, to select which movement data would be used in

the classifier.

• Finally, the data from the most significant movements each week are used to create a

Deep Neural Net binary classifier, to classify each student as being in the top or bottom

50% of the class.

5. Results
To find if there were significant differences between the top and bottom 50% of the students, t-

tests were used, the results of which are considered significant differences between the two groups if

the result is less than 0.05. These results are in bold. The p-value results of the groups according to lab

exam results are in Table 2, and the results of the groups divided by pseudocode performance are in

Table 3. Lab 6 and lab 10 included lab exams, during which the students could not look at their

previously written code from earlier labs.

C2C C2R R2C R2R R2E E2C E2R E2E

1 0.001214 0.470967 0.539369 0.448587 0.090213 0.070492 0.650004 0.24305

2 0.004757 0.02424 0.665045 0.674198 0.005787 0.060203 0.388143 0.260525

3 4.80E-06 5.04E-05 0.112107 0.585846 0.031448 0.498212 0.120838 0.280715

4 1.50E-06 3.16E-08 4.04E-06 0.032048 0.305453 0.031562 0.951828 0.748698

5 4.03E-10 1.47E-08 0.008756 0.100132 0.000341 0.004397 0.015933 0.10881

6 9.00E-14 7.94E-15 5.90E-11 0.019153 0.064127 0.122571 0.026066 0.940655

7 2.05E-06 6.28E-09 6.96E-07 0.561189 0.111728 0.140013 0.924634 0.579504

8 5.73E-13 2.60E-09 0.00853 0.00715 3.36E-05 2.50E-05 0.501948 0.04282

9 0.002878 0.187736 0.187655 0.386204 0.008422 0.0083 0.234538 0.389353

10 6.05E-06 4.70E-07 0.012479 0.683429 0.034407 0.082467 0.609155 0.758995

Table 2: Results of t-test on groups divided by lab exam results

There were significant differences between the two groups found in C2C every week, C2R most

weeks, and R2E and R2C in 8 of the 10 weeks. In Table 3, we see that the results are similar results to

the lab exam t-tests, the main difference being that the R2E movements are almost never significant.

PPIG 2020 61 www.ppig.org

Table 3: Results of t-test on groups divided by pseudocode results

From our predicted behaviour of the Neo-Piagetian stages outlined at the start of the analysis

section we expected to see students who did poorly in the exams displaying different behaviour in the

C2C, C2R and R2C movements as more successful students moved onto preoperational reasoning

stages. Higher achieving students have a consistently lower average percentage of C2C when groups

are divided by lab exam results. The difference in C2C movements gets steadily larger from week 1

until week 7, when it slightly reduces. This is also true for the pseudocode results, with smaller margins

of difference. The difference is smaller in the last weeks of the module, which may indicate that our

students who do not do well are moving through the Neo-Piagetian stages but are not moving quickly

enough for the course.

Higher achieving students have a consistently higher average percentage of C2R when divided

by lab exam results. This difference peaks in week 7, for both lab exam and pseudocode results. Both

groups have a similar percentage of R2C when divided by lab exam results, but the difference peaks in

weeks 6 and 7, when the higher achieving students have a higher average percentage of R2C

movements. This may be the point where successful students have reached preoperational reasoning, as

an increase in R2C movements indicate the student is in the “tinkering” stage as described by Perkins

et al.

Using the dataset containing the CRE percentages for each student for each week, Deep Neural

Net binary classifiers were trained to classify students as being in the top 50% or the bottom 50% of

grades for the lab exams. Linear Regression tests were used to compare the CRE actions and their

relation to student performance in lab exams. This was used to select movement data to be used in the

Deep Neural Nets. Multicollinearity can be an issue for DNN, so a

check was run on the features (where each movement was a feature)

and we removed the most highly correlated CRE data and tested

again. This was repeated until the remaining data was sufficiently

nonlinearly related, when all features had a variance inflation factor

(a test for correlation between independent variables) of less than 5.

The resulting data set was used to train and test our DNN classifier.

A classifier was built for each week of the semester, using the CRE

data from that week, and from all previous weeks. The results are

shown in Table 4. The results of week 9 and 10 are identical to week

8, as it uses the same CRE data after the multicollinearity tests.

5. Discussion
Other studies have referred to lab 4/week 4 (Teague) as the

time around which students who are in danger of failing begin to

perform badly or separate in behaviour from the other students. Of

C2C C2R R2C R2R R2E E2C E2R E2E

1 0.656744 0.010296 0.167739 0.096637 0.368741 0.27848 0.979841 0.062224

2 0.007839 0.01318 0.698311 0.79891 0.005272 0.518315 0.074192 0.384717

3 0.001236 0.000551 0.049986 0.141391 0.498473 0.615511 0.872643 0.817136

4 0.00078 0.000378 0.015029 0.089415 0.768301 0.095344 0.72989 0.085109

5 0.000306 0.001537 0.268965 0.043827 0.051354 0.050773 0.147545 0.185538

6 0.000562 0.001477 0.038343 0.018253 0.07908 0.088534 0.328674 0.182885

7 0.014912 0.00068 0.001243 0.371309 0.114922 0.140932 0.328346 0.52572

8 0.014178 0.279716 0.265897 0.414656 0.768084 0.718394 0.434119 0.501809

9 0.043973 0.184825 0.768122 0.165121 0.268245 0.31005 0.380506 0.77323

10 0.027376 0.009383 0.042855 0.350375 0.601622 0.888391 0.139526 0.910241

Week Average Classifier

Success Rate

1 0.62

2 0.6

3 0.68

4 0.7

5 0.62

6 0.6

7 0.72

8 0.76

Table 4: Classifier results

PPIG 2020 62 www.ppig.org

course, what takes place at this point varies across different institutions and courses. Nonetheless we

see that in line with this estimated timescale, the differing behaviour among students becomes more

pronounced around lab 4, and at this point the classifier has a success of 70%. At this point, if students

are consistently compiling without progressing to run, this is a sign the student is in danger. This is not

hugely surprising. It implies that the student is failing to write compilable code, and we would expect

that a student who cannot write compilable code would be in danger.

The percentage of R2C becomes more significant around week 4. A student who compiles code,

then runs, but then goes back to compile, is most likely working on a semantic issue, rather than a

syntactic one, as mentioned in the BlueJ papers (Jadud 2005, Jadud 2006). We suspect that the reason

it becomes relevant to the students’ overall performance in lab exam results is because week 4 is when

most students should be beginning to master syntax and to abstract solutions, allowing them to construct

more complex programs using multiple concepts together. The result is that we see successful students

compiling successfully and rewriting their code until they reach a solution, causing successful students

to have more C2R movements and fewer C2C movements. Students who are still struggling to write

semantically correct code will have even more C2C movements as the assignments get more difficult.

Research Question: Can we observe signs of progression through the Neo-Piagetian stages of

learning by examining passively collected data on students coding behaviour?

Yes, we have described the expected signs in CRE movements of progression through the stages

of Neo-Piagetian learning, observed these signs in novice programmers and found these signs relate to

student success. From our analysis section, we see that the CRE movements that are associated with

success change as the semester progresses. Using a Neo-Piagetian framework, we examine these

differences.

The three Neo-Piagetian stages in learning to program (Lister, du Boulay, Teague, Teague et al.):

(1) Sensorimotor Stage - interacting almost randomly, with little understanding of the outcome

A high percentage of C2C movements may indicate that a student is tinkering almost randomly

with their code and is unable to write compilable code. From our analysis, we see that a lower

amount of C2C movements, and a higher amount of C2R movements is associated with better

performance in lab exams. This is similar to the findings in the paper (Vihavainen) which found

a statistically significant difference between the number of runs and tests for students with

previous programming experience and those without.

(2) Preoperational Stage – beginning to master syntax, deeper understanding and being able to predict

behaviour from interactions

Students with a higher amount of C2R movements may be in this stage, as they become able to

write compilable code, but are still be unable to predict the outcome of their code. As a result

of this, the student will repeatedly “tinker” with their code, resulting in increased R2C

movements. We found R2C movements became significant from week 4, indicating that

students should reach this stage by week 4 if they are to be successful in the module lab exams.

(3) Concrete Operational Stage – can “chunk” (Shneiderman & Mayer) programming concepts and

abstractions of the code’s behaviour, allowing the programmer to write more complex code.

At this point, students should be able to write compilable code and successfully predict their

code’s outcome. Students at this stage should have fewer C2C movements, fewer C2R

movements, and a higher percentage of R2E movements. This indicates that they have a good

grasp of semantics and are able to predict code behaviour with less tinkering and playing with

code. We would expect to see a higher correlation between outcome and R2E movements as

students reach this stage, and while R2E is related to success at some points in the semester, the

average difference between the two groups is consistently low. We strongly suspect that most

students do not reach concrete operational stage until after their first semester (Teague).

PPIG 2020 63 www.ppig.org

6. Conclusions
We have found that C2C and C2R movements are important indicators of student performance

in their first semester of programming. While the highest classifier success of 76% used data from

throughout the 8 weeks, we had success with the week 4 classifier which had a success percentage of

70%, showing there is evidence of a student success or failure as early as week 4. This version of the

classifier used all 4 weeks C2C percentages as the input data in predicting the student outcome. In future

work, it would be worth looking at which specific assignments and topics are key clues in a student’s

eventual outcome.

We would expect that student coding behaviour would correlate to lab exam performance and

pseudocode performance, if the coding behaviour in question indicates progress through the Neo-

Piagetian stages of learning. We have seen that patterns of student behaviour contain indications from

an early stage if they are likely to perform well in lab exams. We have discussed how this relates to

previous work done in the area of Neo-Piagetian theory in the context of students learning to program.

We have established a strong case for the connection between students’ programming behaviour and

their stage of Neo-Piagetian learning by showing the correlation between student CRE movements, and

their lab exam outcomes, and we discussed the reasons behind those behaviours and how they relate to

Neo-Piagetian theory.

Introduction to programming modules that emphasize only how to write code, and grade based

primarily on written code may be problematic. Results of pseudocode assignments in a programming

module can help us as researchers and educators to identify students who have not developed mental

models of programming concepts, and are instead relying on “hacking”, where students attempt to

complete a coding assignment by writing code and testing input/output without planning and predicting

their code’s behaviour. Students who are “hacking” may still perform reasonably well in their weekly

labs, and so may believe that they are keeping up and do not need to continue to work on their grasp of

fundamental coding concepts. These students will then progress to more difficult modules without the

programming basics required to engage with the material. This may be a scenario unique to computer

science and a significant contributary factor as to why computer science failure rates are so high. In

future work, we will examine how a novice programmer’s pseudocode results and patterns of behaviour

may relate to code complexity, as a reflection of their ability to “chunk” programming concepts, in

order to combine them to create solutions for programming problems.

In conclusion, the most significant findings from this study are, firstly, that the divergence in

behaviour between high and low achieving students takes place in week 4. Students who are not

displaying signs of progression to the preoperational stage of Neo-Piagetian learning do not do well in

their lab exams at the end of the semester. Secondly, we found that these differences in behaviour are

less pronounced later in the semester – implying that the students who were behind in week 4 are capable

of progression to preoperational stage, but crucially, not at the pace dictated by the module.

7. References
Adelson, B. (1981). Problem solving and the development of abstract categories in programming

languages. Memory & cognition, 9(4), 422-433.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. AcM SIGcSE

Bulletin, 39(2), 32-36.J. Bennedsen and M. E. Caspersen. Failure rates in introductory

programming.ACM SIGCSE Bulletin,39(2):32–36, 2007.

Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning analytics to

understand the learning pathways of novice programmers. Journal of the Learning Sciences,

22(4), 564-599.

Berland, M., & Martin, T. (2011). Clusters and patterns of novice programmers. In The meeting of the

American Educational Research Association. New Orleans, LA.

Bisant, D. B., & Groninger, L. (1993). Cognitive processes in software fault detection: a review and

synthesis. International Journal of Human‐Computer Interaction, 5(2), 189-206.

PPIG 2020 64 www.ppig.org

du Boulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass box: presenting computing

concepts to novices. International Journal of man-machine studies, 14(3), 237-249.

Castro-Wunsch, K., Ahadi, A., & Petersen, A. (2017, March). Evaluating neural networks as a method

for identifying students in need of assistance. In Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education (pp. 111-116).

Corney, M. W., Lister, R., & Teague, D. M. (2011, January). Early relational reasoning and the novice

programmer: Swapping as the “Hello World” of relational reasoning. In Conferences in

Research and Practice in Information Technology (CRPIT) (Vol. 114, pp. 95-104). Australian

Computer Society, Inc..

Corney, M. W., Teague, D. M., & Thomas, R. N. (2010, January). Engaging students in programming.

In Conferences in Research and Practice in Information Technology, Vol. 103. Tony Clear and

John Hamer, Eds. (Vol. 103, pp. 63-72). Australian Computer Society, Inc..

Culligan, N., & Casey, K. (2018). Building an Authentic Novice Programming Lab Environment. Irish

Conference On Engaging Pedagogy

Jadud, M. C. (2005). A first look at novice compilation behaviour using BlueJ. Computer Science

Education, 15(1), 25-40.

Jadud, M. C. (2006). An exploration of novice compilation behaviour in BlueJ (Doctoral dissertation,

University of Kent).

Lang, C., McKay, J., & Lewis, S. (2007). Seven factors that influence ICT student achievement. ACM

SIGCSE Bulletin, 39(3), 221-225.

Lister, R. (2011, December). Concrete and other neo-Piagetian forms of reasoning in the novice

programmer. In Conferences in Research and Practice in Information Technology Series.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008, September). Relationships between reading,

tracing and writing skills in introductory programming. In Proceedings of the fourth

international workshop on computing education research (pp. 101-112).

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of learning in

novice programmers. Journal of Educational Computing Research, 2(1), 37-55.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in programmer behavior: A

model and experimental results. International Journal of Computer & Information Sciences,

8(3), 219-238.

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer. Psychology Press.

Teague, D. (2015). Neo-Piagetian theory and the novice programmer (Doctoral dissertation,

Queensland University of Technology).

Teague, D., Lister, R., & Ahadi, A. (2015, January). Mired in the Web: Vignettes from Charlotte and

Other Novice Programmers. In ACE (pp. 165-174).

Vihavainen, A., Luukkainen, M., & Ihantola, P. (2014, October). Analysis of source code snapshot

granularity levels. In Proceedings of the 15th Annual Conference on Information technology

education (pp. 21-26).

Watson, C., & Li, F. W. (2014, June). Failure rates in introductory programming revisited. In

Proceedings of the 2014 conference on Innovation & technology in computer science education

(pp. 39-44).

Wiedenbeck, S. (1985). Novice/expert differences in programming skills. International Journal of Man-

Machine Studies, 23(4), 383-390.

PPIG 2020 65 www.ppig.org

Developing Testing-First Labs For a Less Intimidating Introductory CS
Experience

Angela Zavaleta Bernuy
Dept. of Computer and
Mathematical Sciences

University of Toronto Scarborough
angelazb@cs.toronto.edu

Brian Harrington
Dept. of Computer and
Mathematical Sciences

University of Toronto Scarborough
brian.harrington@utoronto.ca

Abstract
When introducing non-majors to programming in an introductory computer science course, the simple
mechanics of code writing can be intimidating. Many students report feeling overwhelmed by the re-
quirements of user interfaces and syntax guides before even writing their first line of code. In an attempt
to combat this anxiety, we have developed a tool called Code Detective, which allows students to learn
fundamental skills of computer science: testing, program description, debugging and tracing before ever
having to write any code.

Code Detective starts by completely hiding the code, asking students to reverse engineer the specifica-
tions of each module from only the inputs and outputs. Over several weekly laboratory sessions, students
are then introduced to program definition, documentation and testing, as more elements of the code are
revealed. Students then learn tracing and debugging, all before actually being required to directly write
or edit any code.

In this experience report, we discuss the development and deployment of Code Detective in an Introduc-
tion to Programming course for non-majors course at a large North American research university.

1. Introduction
Learning to program is perceived by many students as a very challenging academic task (Bennedsen
& Caspersen, 2007). It is a common understanding that students can get intimidated and overwhelmed
when they are introduced to programming, especially if they have a fixed idea on their minds about the
levels of difficulty of the subject.

Reports show that there are high failure rates when learning to program, and many students choose
not to take computer science courses because they find the concept of programming to be intimidating
(O’Donnell, Buckley, Mahdi, Nelson, & English, 2015). Educators have been trying to improve the
overall students’ satisfaction as it is connected with students’ retention (Rybarczyk, 2020). As non-
majors have different learning habits from traditional computer science students (Rybarczyk, 2020),
increasing engagement during a non-majors class is always a challenge (O’Donnell et al., 2015).

Previous work about other strategies to introduce programming includes educational games, breadth-
first approaches, testing first, among others. Educational games have been used to increase students’
engagement and retention (Lee, Ko, & Kwan, 2013). Another approach is breadth-first, which includes
teaching students everyday computer tasks like image editing, OS installation and building home com-
puter networks in an undergraduate course (McFall & DeJongh, 2011). There has been work done
in testing-first approaches to introductory programming. Marrero Settle conducted a course where stu-
dents were required to implement their test cases before completing their assignments (Marrero & Settle,
2005).

This work explores an alternative way of introducing programming to non-major students that combines
some elements of breadth-first and testing-first approaches, utilizing more traditional deductive reason-
ing skills in place of technical abilities that may be new and intimidating to novice programmers. The
focus of this work is to present programming as a deductive logical process first, allowing students to
think algorithmically, and become comfortable with fundamental concepts of programs and functions,
before presenting them with actual code. In this way, students can begin by using tools and methods with

PPIG 2020 66 www.ppig.org

which they are already familiar while they are gradually introduced to more specific computer science
concepts.

2. Code Detective
Code Detective is a tool that was designed as part of an Introduction to Programming course for non-
major students at The University of Toronto Scarborough. The web tool was developed by a team of
undergraduate computer science students. Code detective focuses on introducing non-major students to
the concept of computing in a way that emphasizes skills they already possess, without forcing them
to write (or initially, even read) code that they may find overwhelming. The programming languages
taught in the course were Scratch and Python, and this tool was easily adaptable to both languages.

Code Detective consists of nine modules that are aligned with the material covered during the weekly
lectures starting on the second week of the semester. Students worked in pairs on the Code Detective
modules during two-hour weekly laboratory sessions supervised by teaching assistants. The teaching
assistants were mainly tasked with providing guidance to groups as needed. At the end of each session,
students were asked to present their solutions and explain their reasoning.

Each module consists of a series of questions about various programs with simple logic. In the first
modules, the program’s code is entirely hidden, only offering input and output on the screen where
the students are asked to experiment with the program and deduce what it does, formally define the
program’s function, and develop a testing plan to determine if the program has any bugs. For later
modules, students practice how to trace and repair code, without the need for writing any code. Only in
the later modules are students asked to write or edit code.

The nine modules were created following a gentle, yet increasingly difficult pedagogy as follows:

2.1. Lab 0: Program definitions
Consists of twenty questions. Each question has a small program with a series of input/output boxes
(check-boxes, text boxes, date selectors). The students need to provide some input, click the "run"
button and keep track of the response. After experimenting with the program, they are asked to provide
a formal definition for the function which includes: stating what the function does, valid input and
expected output.

2.2. Lab 1: Program definition and introduction to algorithms
Consists of two parts, five questions each. For the first five questions, the students are given the definition
of a program and a high level algorithm that would implement the definition in a flawed way. Their goal
is to find the flaws in the algorithm by providing a list of test cases that will fail and write the fixed
algorithm. For the last five questions, the students only get the definition of a program and they have to
provide an algorithm to solve the problem.

2.3. Lab 2: Test dimensions and black-box testing
Consists of two parts, five questions each. For the first five questions, the students were provided with
the definition of a program and are tasked with designing a testing plan. They need to provide the
dimensions of the testing space, decide which are the important points on each dimension, and calculate
the number of tests required for a full coverage testing. For the last five questions, they need to perform
black-box testing of a given program and provide a list of failed test cases specifying the input, expected
output, and actual output.

2.4. Lab 3: Tracing and white-box testing
Consists of two parts, five questions each. For the first five questions, the students are provided with a
simple algorithm. Their task is to trace the code for a given input and enter the output. The students
get immediate feedback from Code Detective and a live-count of failed attempts while entering their
answers. For the last five questions, they need to perform white-box testing of a given Scratch program
and provide a list of failed test cases specifying the input, expected output, and actual output.

PPIG 2020 67 www.ppig.org

2.5. Lab 4: Tracing and debugging
Consists of two parts, five questions each. For the first five questions, the students are provided with
more complex code than the previous module as loops are introduced. Their task is to trace the code
for a given input and enter the output. The students get immediate feedback from Code Detective and
a live-count of failed attempts while entering their answers. For the last five questions, the students are
given a broken program and their task is to debug and fix the code.

2.6. Lab 5: Refactoring and implementation
Consists of two parts, five questions in total. For the first three questions, the students get a working
program that is not well designed. Their task is to refactor it by creating smaller, better designed modules
without breaking the code. For the last two questions, the students get an incomplete program with
missing code segments (missing blocks in Scratch). Their task is to implement the missing components
to get the code working.

2.7. Lab 6: Efficiency, and implementation
Consists of two parts, five questions in total. For the first three questions, the students get a working pro-
gram implemented inefficiently. Their task is to refactor the program without changing its functionality.
For the last two questions, the students get the definition of a program with a set of specifications that
they are required to implement.

2.8. Lab 7: Scratch-Python translation
Consists of five questions. Each question has five different Scratch working programs. The students
need to translate the Scratch code into Python code. The students are required to test their translated
code using an IDE and demonstrate their testing plan. This module is specifically designed for courses
that cover more than one language in order to help students learn to work with a new language, but can
also be used to help students understand how much of their learning is transferable to other languages.

2.9. Lab 8: Design and implementation
The students are provided with a partially completed Python code. They are required to read and under-
stand the code, as well as to implement the missing documented functions.

Following the completion of the Code Detective modules, the students are required to work on a project
of their choice where they had to implement a program either using Scratch or Python. Some of the most
common projects were arcade games in Scratch and simple data management programs in Python.

3. Evaluations
Based on the anonymous course evaluations, some students shared that they enjoyed this course design
because they did not have any prior coding experience and they were gradually exposed to the course
content. Moreover, one student stated that "this was good because it prevented me from getting scared off
from programming forever". A couple of students shared that the structure of the course helped reduce
intimidation as it helped them "let go of the mindset that computer science is intimidating and instead
makes us see that computer science can be for everybody", and that we created "a learning atmosphere
that was not intimidating as a person with no experience at coding!".

Many students stated that the course was still challenging and required time and effort to develop a
deeper understanding of programming concepts. They agreed that Code Detective helped reinforce the
lecture material and encouraged them to get more practice. On the other hand, students who had prior
coding experience reported that they felt the class progress slow and they wished they were exposed to
harder concepts.

To measure the success of Code Detective compared to previous deliveries of the same course, we looked
at the drop rates from previous years. We found that the year in question had a 7% drop rate, around
23% lower than the previous years: 29% and 30% in the two years prior, even though the class size of
450 students was the same across the three years. While we cannot attribute this substantial reduction in
drop rates to Code Detective directly, as other factors such as teaching staff and structure were not held

PPIG 2020 68 www.ppig.org

constant, the teaching team commented on the absence of the phenomenon, observed in previous course
offerings, of students dropping after being unable to complete the first lab sessions.

4. Conclusion
Code detective played a key role in reducing students’ sense of intimidation, and fostered a sense of
accomplishment without resorting to paternalistic methodologies or games that may alienate some stu-
dents. Introducing computer science as a deductive, logical, problem solving system first before intro-
ducing the technicalities of code writing made students feel that they were able to use the logic and
reasoning skills they already possessed to solve problems, and gave them a gentler and less intimidating
introduction to programming.

5. References
Bennedsen, J., & Caspersen, M. E. (2007, June). Failure rates in introductory programming. SIGCSE

Bull., 39(2), 32–36. doi: 10.1145/1272848.1272879
Lee, M. J., Ko, A. J., & Kwan, I. (2013). In-game assessments increase novice programmers’ engage-

ment and level completion speed. In Proceedings of the ninth annual international acm conference
on international computing education research (pp. 153–160).

Marrero, W., & Settle, A. (2005). Testing first: emphasizing testing in early programming courses.
In Proceedings of the 10th annual sigcse conference on innovation and technology in computer
science education (pp. 4–8).

McFall, R. L., & DeJongh, M. (2011). Increasing engagement and enrollment in breadth-first in-
troductory courses using authentic computing tasks. In Proceedings of the 42nd acm technical
symposium on computer science education (pp. 429–434).

O’Donnell, C., Buckley, J., Mahdi, A., Nelson, J., & English, M. (2015). Evaluating pair-programming
for non-computer science major students. New York, NY, USA: Association for Computing Ma-
chinery.

Rybarczyk, R. (2020). Non-major peer mentoring for cs1. In Proceedings of the 51st acm technical
symposium on computer science education (p. 1068–1074). New York, NY, USA: Association for
Computing Machinery. doi: 10.1145/3328778.3366901

6. Appendix: Code Detective Interface

Figure 1 – Code Detective Main Menu

PPIG 2020 69 www.ppig.org

Figure 2 – Lab 0 Menu

Figure 3 – Lab 0 Sample Question

Figure 4 – Lab 1 Sample Question 1

Figure 5 – Lab 1 Sample Question 2

PPIG 2020 70 www.ppig.org

Figure 6 – Lab 2 Sample Question 1

Figure 7 – Lab 2 Sample Question 2

Figure 8 – Lab 3 Sample Question 1A

PPIG 2020 71 www.ppig.org

Figure 9 – Lab 3 Sample Question 1B

Figure 10 – Lab 3 Sample Question 2

Figure 11 – Lab 4 Sample Question

PPIG 2020 72 www.ppig.org

Figure 12 – Lab 5 Sample Question

Figure 13 – Lab 6 Sample Question

Figure 14 – Lab 7 Sample Question

PPIG 2020 73 www.ppig.org

Figure 15 – Lab 8 Sample Question

PPIG 2020 74 www.ppig.org

A princip led approach to the development of drum improvisation skills through
interaction with a conversational agent

Abstract
Shedding is a term used to describe a musical conversation between drummers with the aim to improve
their drumming vocabulary, gain confidence in real-time trading of musical ideas, develop an
understanding for their original voice on the drum kit and enjoy the process of exploring creativity with a
fellow drummer. However, in practice drummers have limited opportunities to play in real time with other
drummers. This research explores shedding activity in the form of mixed-initiative interaction between a
human drummer and a conversational agent. This paper focuses on a series of design studies and
experiments to explore three novel refinements to the proposed shedding model.

1. Introduction
The proposed agent embodies an inference system allowing it to navigate through transformations of a
core phrase chosen by the user (the starting point of every shedding interaction in our model) with a
design aim of conversing with the human drummer in a way that is perceived as meaningful, musical and
inspiring. The transformations involve the agent taking a core phrase and adapting it in various ways, for
example, by making changes to elements such as orchestration, metric modulation and phase shift. These
elements offer dimensions of development in linear drumming, where a range of transformations of each
element can be explored by the agent and human drummer. This research focuses on creating a reflective
drumming agent that inspires the user by having a conversation rather than by teaching specific grooves
(Senn, 2018) or drumming concepts. This paper focuses in particular on how this central shedding model
can be enhanced and deepened based on a novel characterisation of rhythmic grouping and accent
patterns.

2. Previous work
Previous research has investigated creativity from a number of perspectives including computer
modelling (Boden 1994, Cope 2005), communication (Davidson 2005) and perfection (Berger 1999).
However, creativity in performance has received relatively little attention (Pinheiro 2010). More
specifically, research into musical interaction activities with intelligent systems such as the Continuator
(Pachet, 2003), Controlling Interactive Music (Brown, 2018) and Monterey Mirror (Manaris et al. 2018)
present tools for contemporary music creation and co-creativity. However, our present work suggests a
musical framework with a reflective agent that aims to elicit creativity by encouraging the human
drummer to observe and refine their creative process.

3. Adding depth to the shedding model
The inference system employed by the agent uses the core phrase and rules of transformations in order to
converse with the human drummer in ways that are perceived as meaningful. Following several design
prototyping studies using Wizard of Oz, we were able to refine the initial transformation model with three
elements: linear drumming, grouping and external inspiration for core phrases.

Noam Lederman
Music Computing Lab
The Open University

noam.lederman@open.ac.uk

Simon Holland
Music Computing Lab
The Open University
s.holland@open.ac.uk

Paul Mulholland
Knowledge Media Institute

The Open University
p.mulholland@open.ac.uk

PPIG 2020 75 www.ppig.org

3.1. Linear drumming
Linear drumming is a monophonic drumming playing style, where drum instruments are hit exclusively
one at a time. Combining the conversational shedding model with the linear concept amplifies the clarity
of the system responses, making the transformations of the core phrase stand out for the human drummer.
Moverover, linear drumming is very common in live shedding interactions and therefore adds a layer of
stylistic authenticity to our model. The relative ease of monophonic drumming, as opposed to polyphonic,
allows us to refine our design further by exploring one-bar drumming phrases that alternate
unambiguously between accented and unaccented notes. The relationships between these two types of
notes create clear grouping relationships that reflect the shape and conversational tone of the drummer.

3.2. Grouping
Although the idea of grouping as a recursive segmentation of musical phrases occurs in Jackendoff
(2009), in this paper we propose an alternative characterisation of groupings based on accent patterns in
the context of linear drumming. We explore two-bar system transformations that take advantage of this
characterisation with the aim to promote thematic unity in the shedding process. Under this
characterisation we analysed the accent patterns to identity groupings using the following procedure: i)
the first accented note marks the beginning of a phrase and is therefore internally annotated with the
number ‘1’. ii) each subsequent unaccented, or crucially, consecutive accented note is then numbered
serially ‘2’, ‘3’, ‘4’ etc. iii) new sections (marked with the number ‘1’) start with each new accented note
that follows an unaccented one. We posit that the shedding interaction will be perceived as more
meaningful and inspiring to the human drummer if the system’s transformations are sensitive to the accent
patterns that emerge from the grouping characterisation.

3.3. External inspiration for core phrases
With the aim to make the shedding interaction more inspiring and promote learner’s autonomy (Green,
2002), we have explored a model where the agent and human drummer can utilise the similarities in the
hierarchical metrical grid (Jackendoff, 2009) between drumming and 30 second extracts from spoken art
forms such as rap, speech and poetry. For example, rhythmic content can be borrowed from a rhythmic
speech art form, transformed into one or more core phrases and used for shedding with the conversational
agent. Our experiments drew on a wide variety of creative sources: i) a speech by Nelson Mandela ii) a
song by Grime artist Stormzy iii) a freestyle rap by the artist Mos Def. We conclude that further research
into the hierarchical metrical grid used in spoken art forms such as rap and poetry may offer creative new
ways for learning stylistic improvised interaction through a musical instrument, such as the drum kit.

4. Conclusions

● Shedding is a promising basis for mixed-initiative interactions between a human drummer and a
conversational agent.

● Early explorations have presented the potential of such interactions to improve drumming
vocabulary, promote confidence in real-time trading of musical ideas, foster originality and
promote exploration of creativity.

● Relationships between the accented and unaccented notes in linear drumming create clear
grouping relationships that reflect the shape and conversational tone of the drummer.

● Shedding interactions will be perceived as more meaningful and inspiring to drummers if the
system’s transformations are sensitive to the grouping of accent patterns.

● Further research into the hierarchical metrical grid used in spoken art forms such as rap and
poetry may offer transformative ways for learning stylistic improvised interaction through a
musical instrument, such as the drum kit.

PPIG 2020 76 www.ppig.org

5. References
Brown, A. R. (2018). Creative improvisation with a reflexive musical bot. Digital Creativity, 29(1), 5-18.
Chester, G. (2006). The New Breed: Systems for the Development of your own creativity. Hal Leonard
Corporation.
Greb, B. (2008). The language of drumming.
Green, L. (2002). How popular musicians learn: A way ahead for music education. Ashgate Publishing,
Ltd..
Jackendoff, R. (2009). Parallels and nonparallels between language and music. Music perception, 26(3),
195-204.
Lerdahl, F. (2009). Genesis and architecture of the GTTM project. Music perception, 26(3), 187-194.
Manaris, B., Hughes, D., & Vassilandonakis, Y. (2011, June). Monterey mirror: combining Markov
models, genetic algorithms, and power laws. In Proceedings of the IEEE Conference on Evolutionary
Computation.
Pachet, F. (2003). The continuator: Musical interaction with style. Journal of New Music Research, 32(3),
333-341.
Pinheiro, R. (2010) ‘The creative process in the context of jazz jam sessions’. Journal of Music and
Dance. 1(1), pp. 1-5. Available at: http://www.academicjournals.org/journal/JMD/edition/January_2011
(Accessed 04.06.2014).
Senn, O., Kilchenmann, L., Bechtold, T., & Hoesl, F. (2018). Groove in drum patterns as a function of
both rhythmic properties and listeners’ attitudes. PloS one, 13(6), e0199604.

PPIG 2020 77 www.ppig.org

Programming “systems” deserve a theory too!

Joel Jakubovic
School of Computing

University of Kent
Joel.Jakubovic@kent.ac.uk

Abstract

It is comparatively easy to find new languages and derivative work within academic publishing, but
somewhat harder for more general programming "systems" or "environments" which encompass more
than that. This is a shame, since some of these have a dedicated following and have influenced program-
ming and computing at large. We concentrate on some examples of such that, for various reasons, do
not have much material written about them. We suggest some reasons to expect this, and draw attention
to some characteristics (both "cognitive" and "technical") marking them worthy of further study. We
conclude with a sketch of further steps to make the most of these software artefacts from a research
perspective.

1. Introduction
Programming language theory, implementation and evaluation is an expansive and well-established field.
Even entire applications, “environments” or “systems”, developed for the purposes of research, con-
tribute to progress by being discussed and evaluated within a certain academic scope (for example,
HCI). However, there exist innovative, influential or otherwise noteworthy systems that nevertheless fall
outside of these realms. As we expand on later, this is in part due to originating outside of the academic
environment, and it is also pushed against by the nature of the publishing medium. We will lead in with
three such systems to illustrate our later points.

1.1. Smalltalk
Smalltalk could be described as a self-sufficient desktop environment programmed in a language of the
same name. It was influential on the rise of object-orientation and graphical user interfaces, and was
itself intended to be widely embraced. However, it did not manage to achieve this goal, and lives on in
its own niche on a par with other programming language ecosystems.

Whenever a language or IDE feature spreads across the mainstream, Smalltalkers have a reputation
for pointing out that Smalltalk was able to do the same thing back in the ’80s. This is a plausible
claim, owing to the deliberate high-level, flexible and totalising architecture of the system. Noting
its following by a community of devotees, this is evidence of something special and valuable to learn
from and build upon. However, despite having a literature presence in virtual-machine optimisation and
related implementation technologies, insight into Smalltalk’s design seems to be mostly scattered around
historical magazine articles (BYTE Magazine Volume 6, Number 8, 1981), web pages and blog posts.

Without a well-structured design discussion, it is only clear that there is “something about Smalltalk” that
is worth improving on. In other words, it is difficult to distinguish which specific aspects of Smalltalk are
essential to its value and which are incidental. We can identify characteristics such as meta-circularity
and self-sufficiency, by which the software within lives in a world where “everything is Smalltalk”. An-
other identifying feature is that instead of transient “applications” and manual saving to “files”, the entire
system state is persisted as a continuously evolving “image”. Smalltalk also embeds its programming
language within a larger prescribed context of graphical interface and device utilities, encompassing the
same roles (and scope) of an entire Operating System. Such prescription of a graphical interface is char-
acteristic of what we are referring to as “systems”, but this last “encompass the world” aspect is more
unusual.

PPIG 2020 78 www.ppig.org

1.2. HyperCard
HyperCard was a platform for exploring and creating interlinked sets of multimedia pages, often re-
garded as a precursor to the Web. Explicitly designed with the goal of end-user empowerment, with
a slogan of “programming for the rest of us”, HyperCard was a popular platform both to share and to
author among teachers, businesspeople, and other non-programmers. This was no doubt in part due to
its (initial) default inclusion in Macs. However, the existence of other default apps (such as Terminal)
not enthusiastically adopted by end-users means that HyperCard itself still stands on its own merit.

HyperCard applications were organised into “stacks”, with typical UI elements (text, pictures, buttons)
added and edited by direct manipulation. Every such element could have a script attached to it in
HyperTalk, a language designed to resemble English. HyperCard also distinguished itself in having
separate “beginner” / “advanced” layers, allowing novices to make their way through straightforwardly
using and maybe editing stacks superficially, before digging into more advanced authoring and scripting.

Unfortunately, despite its popularity and originality, HyperCard fell out of use due to corporate and
marketing decisions and subsequent declining technical support, eventually falling out of compatibility
with newer versions of the Mac OS. As HyperCard was primarily a commercial product, not much has
been written about its design, but its popularity suggests that it is worth studying and possibly adapting
for future software systems. Sample design characteristics for HyperCard include its layered design
allowing progression from using to developing card stacks, and the fact that such developing is not
considered something far away but instead occurs in the same user interface.

1.3. Flash
Adobe Flash was a widely popular browser plugin providing “rich” content (video, audio, and games)
for the primitive early Web. Such applications were created using Flash Builder: an advanced graphical
workspace for various forms of vector graphics and animation, scripted with an event-driven language
called ActionScript.

Flash gave rise to an explosion of animations, games and websites across the early Web, often by indi-
viduals and within online communities. Because it was used so widely for websites and games, Flash
can be considered a success case, to some extent, of “end-user” software development. Unfortunately,
Flash was thought to be too insecure and poorly-optimised for the emerging mobile platforms of the
2010s. Apple’s decision not to support Flash on the iPhone ultimately spelled its decline and planned
official demise at the end of 2020.

Following from our previous two examples, what are the interesting design characteristics of Flash? Its
success may be attributed to the fact that it merely filled a gap and achieved rapid ubiquity as a result,
even defining a new medium of interactive Web content. This is certainly true, but suggests this role
could have been filled by any other provider of rich content support. Flash Builder, though, does seem to
be an effectively designed tool for its audience. It is a graphical editor centering around a WYSIWYG
“stage” metaphor, surrounded by many specialised sub-interfaces (for example, managing the broad and
narrow details of keyframe animation), and with an attached scripting sub-editor. Are there more specific
design principles hiding here than merely “use the right interface for the job”?

2. What to do?
2.1. Rational Reconstruction
The main point of focusing on such systems is that they exist outside of the academic literature, having
been commercial or educational ventures rather than research artefacts. This means that theoretical
analysis or design rationale, if it exists at all, may have never been published or be scattered around
documents for internal use. In some cases, there may not be any such written material or what existed
has been lost.

This means that it is currently hard to do rigorous follow-up work on these artefacts. If we wish to build
on their successes and learn from their failures, in a scholarly way, there needs to be more than the arte-
fact itself and documentation. They need to be made “legible” to academic literature by reconstructing

PPIG 2020 79 www.ppig.org

what their design and theoretical analysis would have been in such a counterfactual world.

2.2. Cognitive and Technical Dimensions
One component of such a “rational reconstruction” could be an analysis in terms of a common vocab-
ulary of named characteristics. For example, the Cognitive Dimensions of Notation framework (Green
& Petre, 1996) suggests a number of “dimensions” along which a user interface or “notation” may be
measured, along with linkages and tradeoffs between different dimensions. This is certainly useful, but
its emphasis on the cognitive aspect of interfaces might leave uncharted other aspects – what we suggest
to be technical dimensions – of the “rest” of a software system.

For example, a programming language in which “code” is expressed in the same form as “data” is said
to exhibit “homo-iconicity”. We could extend this to systems-in-general, perhaps, as a measure of how
much automating a task resembles manually performing it. Similarly, “self-sufficiency” measures the
extent to which a system can be improved and evolved from within, without relying on external tools.
Smalltalk was designed to be quite high on this measure (intended to “obsolete itself”), while HyperCard
and Flash (along with most other software) facilitate creation of separate artefacts (HyperCard stacks,
Flash applications) and can only be changed via in-application preferences or by editing their source
code.

Our desire for “technical” dimensions comes from a feeling that there are also properties of “the system
itself” rather than merely its interface. If cognitive dimensions are about how a system is received or
experienced by users, then technical dimensions are about how the system was intended or designed.
However, this does rest on an assumption that separating the “interface” from the “system itself” is a
meaningful or useful thing in the first place, and we invite further discussion of this.

Whatever the details, such a set of technical dimensions would introduce a common language for com-
parisons between systems, which is currently lacking. It would give systems research a shot at “charac-
terising the design space” of possible systems (Church & Marasoiu, 2019) and enable the identification
of currently unexplored gaps in that space.

2.3. The Medium is the Message
Another important thing to note is that academic publishing is by and large a paper (virtual or physical)
medium; as such, the ease with which one can publish varies according to the medium of the subject
matter. Programming languages, being strings of characters equipped with syntax and semantics, lend
themselves very well to describing in a paper. However, our systems of interest is that tend to be
graphical, interactive systems rather than languages alone. They define much more of a given computing
environment than languages; they additionally state how they are graphically presented and manipulated.
So, in order to properly present or discuss these systems in full, one needs to at least provide pictures
and ideally provide a running version.

While videos or runnable artefacts can be part of academic submissions, they are still seen as “sup-
plementary material” to accompany a written paper. It is plausible that this makes it less attractive to
present general “systems” in academic publishing, and the non-academic nature of our examples is eas-
ier to understand in light of this. This is recognised in (Edwards, Kell, Petricek, & Church, 2019), which
begins a conversation about how format, submission and peer-review ought to look for such interactive
systems and work on their design. Such a model would support a “gallery of interactions” with (possibly
simplified) re-creations of systems as one possible corrective.

3. Conclusions
In summary, there exist interesting holistic “systems” which seem to have been ignored in published
research. To be able to do follow-up work on them, we need a deeper and more rigorous understanding.
But their typical commercial or educational nature means there was no initial body of literature to seed
such a process. Additionally, the (virtual) paper medium is not well suited to “systems” in the first place.
We propose to re-create the design analysis in light of innovations like the Cognitive Dimensions frame-
work, and taking advantage of more appropriate media like video or interactive essays. A Smalltalker

PPIG 2020 80 www.ppig.org

might say that “everything was already invented in the 1970s”; we agree that there was little explicit
building upon the visionary work of the past. To remedy this, we need to take a fresh, academically
rigorous look at such old work on programming systems.

4. References
Byte magazine volume 6, number 8. (1981). Retrieved from https://archive.org/details/

byte-magazine-1981-08/
Church, L., & Marasoiu, M. (2019). What can we learn from systems? In Proceedings of the conference

companion of the 3rd international conference on art, science, and engineering of programming.
New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi
.org/10.1145/3328433.3328460 doi: 10.1145/3328433.3328460

Edwards, J., Kell, S., Petricek, T., & Church, L. (2019). Evaluating programming systems design. In
Proceedings of 30th annual workshop of psychology of programming interest group.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a ‘cog-
nitive dimensions’ framework. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 7,
131–174.

PPIG 2020 81 www.ppig.org

UQdeUVWaQdiQg Whe PURbOeP Rf API UVabiOiW\ aQd CRUUecWQeVV MiVaOigQPeQW

Tao Dong
GRRJOH LLC

MRXQWaLQ VLHZ, CA, USA
WaRdRQJ@JRRJOH.cRP

Eli]abeth F. Churchill
GRRJOH LLC

MRXQWaLQ VLHZ, CA, USA
HcKXUcKLOO@JRRJOH.cRP

AbVWUacW
WKHQ dHYHORSHUV KaYH PRUH WKaQ RQH API WKH\ cRXOd SRWHQWLaOO\ XVH WR VROYH a SURJUaPPLQJ
SURbOHP, LW¶V RIWHQ QaWXUaO IRU WKHP WR VWaUW ZLWK WKH HaVLHU aQd IaPLOLaU, RIWHQ dHIaXOW, RSWLRQ. YHW, IRU
VRPH WaVNV, VXcK aV PaQLSXOaWLQJ WH[W LQ WKH SUHVHQcH RI JUaSKHPH cOXVWHUV (H.J., Jࡇ aQd한), WKH HaVLHU
API cRXOd SURdXcH OHVV cRUUHcW aQd UHOLabOH UHVXOWV. WH VRXJKW WR PHaVXUH WKH LPSacW RI VXcK
PLVaOLJQPHQW bHWZHHQ API XVabLOLW\ aQd cRUUHcWQHVV. SSHcLILcaOO\, ZH cRQdXcWHd a cRQWUROOHd
H[SHULPHQW ZKLcK VKRZV WKaW XVHU HdXcaWLRQ KaV a OLPLWHd HIIHcW RQ KHOSLQJ WKH SURJUaPPHU cKRRVH
WKH aSSURSULaWH API, ZKHQ LW¶V QRW WKH dHIaXOW aQd HUURU caVHV aUH dLIILcXOW WR LPaJLQH. WH dLVcXVV a
IHZ WKLQJV SURJUaPPLQJ OaQJXaJH aQd SDK dHVLJQHUV caQ cRQVLdHU LQ RUdHU WR PLWLJaWH WKH LPSacW RI
VXcK PLVaOLJQPHQWV.

1. IQWURdXcWiRQ
API XVabLOLW\ UHVHaUcKHUV (M\HUV & SW\ORV, 2016) KaYH VKRZQ WKaW SRRU XVabLOLW\ RI APIV caQ OHad WR
IOaZV LQ cRPSXWHU SURJUaPV, aQd VRPHWLPHV VHULRXV VHcXULW\ IOaZV (FaKO HW aO., 2013). HRZHYHU, ZKHQ
WKHUH aUH PXOWLSOH APIV WKH SURJUaPPHU caQ cKRRVH IURP WR VROYH a JLYHQ SURbOHP, XVLQJ WKH PRVW
XVabOH API dRHV QRW QHcHVVaULO\ OHad WR WKH H[SHcWHd RXWcRPH. WKaW LI WKH HaVLHU WR XVH API LV LQ IacW
PRUH OLNHO\ WR SURdXcH LQcRUUHcW RU XQUHOLabOH UHVXOWV XQdHU VRPH cLUcXPVWaQcHV? WH caOO WKLV SURbOHP
³API XVabLOLW\ aQd cRUUHcWQHVV PLVaOLJQPHQW.´ WH bHOLHYH WKLV LV a cKaOOHQJH WKaW KaV bHHQ
XQdHU-H[aPLQHd b\ API XVabLOLW\ UHVHaUcKHUV.

OQH RI WKH aUHaV ZKHUH VXcK a PLVaOLJQPHQW SURbOHP KaV PaQLIHVWHd LWVHOI LV WH[W PaQLSXOaWLRQ,
VSHcLILcaOO\ KaQdOLQJ JUaSKHPH cOXVWHUV LQ XQLcRdH VWULQJV. IQ PaQ\ SURJUaPPLQJ OaQJXaJHV, WH[W LV
RIWHQ UHSUHVHQWHd aV a VHTXHQcH RI UTF-16 cRdH XQLWV. HRZHYHU, VRPH XVHU-SHUcHLYHd cKaUacWHUV QHHd
WR bH bacNHd b\ WZR RU PRUH UTF-16 cRdH XQLWV. IQ IacW, WKLV LV TXLWH cRPPRQ RQcH \RX QHHd aQ\WKLQJ
bH\RQd WKH ASCII cKaUacWHU WabOH. FRU H[aPSOH, WKH OHWWHU Jࡇ LV cRPSRVHd RI a baVH cKaUacWHU J aQd a
cRPbLQLQJ PaUN ଉࡇ , WKH HaQJXO V\OOabOH 한 Pa\ bH UHSUHVHQWHd b\ a VHTXHQcH RI cRQMRLQLQJ MaPRV
ᄒ,ᅡ, aQd 躏 , aQd WKH HPRML LV HQcRdHd aV a sXrrogate pair (MLcURVRIW, 2018) RI WZR UTF-16
cRdH XQLWV 55357 aQd 56395. IQ WKH UQLcRdH SWaQdaUd, VXcK XVHU-SHUcHLYHd cKaUacWHUV aUH IRUPaOO\
NQRZQ aV JUaSKHPH cOXVWHUV (DaYLV & CKaSPaQ, 2020).

GUaSKHPH cOXVWHUV caQ HaVLO\ bUHaN WH[W PaQLSXOaWLRQ cRdH ZULWWHQ ZLWKRXW aQWLcLSaWLQJ WKHLU SUHVHQcH,
bHcaXVH WKH dHIaXOW SWULQJ APIV LQ PRVW SRSXOaU SURJUaPPLQJ OaQJXaJHV aUH QRW aZaUH RI WKHP, aQd
WKH\ LQVWHad RSHUaWH RQ IL[Hd-OHQJWK cRdH XQLWV VXcK aV UTF-16. FRU LQVWaQcH, WKH IROORZLQJ OLQH RI
cRdH LQ DaUW ZLOO SURdXcH aQ XQH[SHcWHd UHVXOW:

SUiQW(jHellR , ZRUld!j.VXbVWUiQg(0,6));

TKH SURJUaPPHU¶V LQWHQW KHUH LV WR SULQW WKH VXbVWULQJ ³HHOOR .´ HRZHYHU, WKH HQd LQdH[³6´
(H[cOXVLYH) ZLOO LQcOXdH ³HHOOR´ aQd WKHQ WKH ILUVW KaOI RI WKH VXUURJaWH SaLU UHSUHVHQWLQJ WKH HPRML.
AV a UHVXOW, WKLV OLQH RI cRdH ZLOO UHWXUQ a VXbVWULQJ ZLWK a PaOIRUPHd WUaLOLQJ cKaUacWHU: ³HHOORᢾ.´
WKLOH WKLV SaUWLcXOaU H[aPSOH LV IURP WKH DaUW SURJUaPPLQJ OaQJXaJH, WKH SURbOHP LV VKaUHd b\ PaQ\
RWKHUV. OQH QRWabOH H[cHSWLRQ LV SZLIW, a PRUH UHcHQWO\ OaXQcKHd SURJUaPPLQJ OaQJXaJH, ILUVW UHOHaVHd
LQ 2014.

FRU PaWXUH SURJUaPPLQJ OaQJXaJHV VXcK aV JaYa, P\WKRQ, aQd DaUW, a cRPPRQ aSSURacK WR addLQJ
VXSSRUW IRU cRUUHcWO\ SURcHVVLQJ JUaSKHPH cOXVWHUV LV SURYLdLQJ aQ aX[LOLaU\ JUaSKHPH-aZaUH WH[W
PaQLSXOaWLRQ OLbUaU\ ZKLOH NHHSLQJ WKH dHIaXOW SWULQJ API LQWacW IRU bacNZaUdV cRPSaWLbLOLW\ aQd
SHUIRUPaQcH UHaVRQV. NRQHWKHOHVV, WKLV VHHPLQJO\ SUacWLcaO aQd VHQVLbOH VROXWLRQ aOVR OHadV WR a

PPIG 2020 82 www.ppig.org

https://paperpile.com/c/t2YTpp/Mw17
https://paperpile.com/c/t2YTpp/3KEb
https://paperpile.com/c/t2YTpp/pxz0
https://paperpile.com/c/t2YTpp/BBYG

PLVaOLJQPHQW bHWZHHQ XVabLOLW\ aQd cRUUHcWQHVV, IRUcLQJ WKH SURJUaPPHU WR cKRRVH bHWZHHQ PXOWLSOH
WH[W PaQLSXOaWLRQ APIV ZLWK KaUd WR WHVW UHaO-ZRUOd LPSOLcaWLRQV. TR OaQJXaJHV WKaW KaYH WaNHQ WKLV
SaWK WR VXSSRUWLQJ JUaSKHPH cOXVWHUV, WKH HaVLHVW WR XVH WH[W PaQLSXOaWLRQ API LV RIWHQ WKH bXLOW-LQ
SWULQJ API dXH WR LWV aYaLOabLOLW\, IaPLOLaULW\, aQd accXPXOaWHd dRcXPHQWaWLRQ aQd cRPPXQLW\
NQRZOHdJH. HRZHYHU, LW¶V RIWHQ WKH OHVV cRUUHcW API WR XVH, HVSHcLaOO\ ZKHQ WKH SURJUaPPHU caQQRW
OLPLW WKH NLQdV RI cKaUacWHUV LQcOXdHd LQ WKH WH[W WKH\ PaQLSXOaWH, aV LW¶V RIWHQ WKH caVH ZKHQ WKH WH[W LV
RULJLQaWHd IURP XVHU LQSXW.

TR XQdHUVWaQd WKH VHYHULW\ RI VXcK PLVaOLJQPHQW bHWZHHQ XVabLOLW\ aQd cRUUHcWQHVV LQ PaNLQJ API
cKRLcHV, ZH cRQdXcWHd a ZHb-baVHd cRQWUROOHd H[SHULPHQW LQ WKH cRQWH[W RI WH[W PaQLSXOaWLRQ LQ WKH
DaUW SURJUaPPLQJ OaQJXaJH. DaUW UHcHQWO\ addHd a SacNaJH caOOHd characters WR VXSSRUW JUaSKHPH
cOXVWHUV ZKLOH NHHSLQJ LWV UTF16-baVHd SWULQJ API XQcKaQJHd. IQ RXU H[SHULPHQW, SaUWLcLSaQWV ZHUH
aVNHd WR H[aPLQH a QXPbHU RI cRdH VQLSSHWV, ZULWWHQ ZLWK DaUW¶V SWULQJ API, IRU cRPPRQ WH[W
PaQLSXOaWLRQ VcHQaULRV aQd dHWHUPLQH ZKHWKHU HacK VQLSSHW ZRXOd SURdXcH WKH H[SHcWHd UHVXOWV. OXU
aQaO\VLV RI WKH H[SHULPHQW UHVXOWV OHd WR WKUHH PaLQ ILQdLQJV:

Ɣ PULRU H[SRVXUH WR WKH JUaSKHPH cOXVWHUV SURbOHP dLd QRW KHOS SaUWLcLSaQWV LdHQWLI\ LW LQ WH[W
PaQLSXOaWLRQ cRdH.

Ɣ PaUWLcLSaQWV LQ WKH WZR WUHaWPHQW JURXSV ZKR UHcHLYHd LQIRUPaWLRQ abRXW WKH JUaSKHPH
cOXVWHUV SURbOHP aQd WKH cKaUacWHUV SacNaJH HaUO\ LQ WKH H[SHULPHQW, VKRZHd a VLJQLILcaQW
LPSURYHPHQW LQ WKHLU abLOLW\ WR PaNH cRUUHcW aVVHVVPHQWV RI WH[W PaQLSXOaWLRQ cRdH RYHU WKRVH
LQ WKH cRQWURO JURXS ZKR dLd QRW UHcHLYH VXcK LQIRUPaWLRQ.

Ɣ NRQHWKHOHVV, PRUH WKaQ KaOI RI WKH SaUWLcLSaQWV ZKR UHcHLYHd aQ H[SOaQaWLRQ abRXW WKH
JUaSKHPH cOXVWHUV SURbOHP VWLOO IaLOHd WR aSSO\ WKaW NQRZOHdJH WR aVVHVVLQJ cRdH VQLSSHWV.

TKH UHVXOWV dHPRQVWUaWH a VXbVWaQWLaO OLPLW RI XVHU HdXcaWLRQ LQ bRWK WKH dXUabLOLW\ aQd VWUHQJWK RI LWV
HIIHcW, ZKHQ WKH XVabLOLW\ aQd WKH cRUUHcWQHVV RI API cKRLcHV aUH PLVaOLJQHd aQd QR LPPHdLaWH
IHHdbacN cRXOd bH SURYLdHd WR WKH SURJUaPPHU. OXU ILQdLQJV VXJJHVW WKaW PRdHUQL]LQJ WKH dHIaXOW
SWULQJ API WR VXSSRUW JUaSKHPH cOXVWHUV VKRXOd bH VHULRXVO\ cRQVLdHUHd b\ SURJUaPPLQJ OaQJXaJH
dHVLJQHUV, HVSHcLaOO\ ZKHQ WKH SURJUaPPLQJ OaQJXaJH LV QRW \HW ZLdHO\ XVHd aQd caQ aIIRUd PaNLQJ
bUHaNLQJ cKaQJHV WR WKH SWULQJ API.

NRQHWKHOHVV, ZKHQ RYHUKaXOLQJ WKH dHIaXOW SWULQJ API LV LQIHaVLbOH, OaQJXaJH aQd SDK dHVLJQHUV
VKRXOd PLWLJaWH WKH XVabLOLW\ aQd cRUUHcWQHVV PLVaOLJQPHQW b\ IacLOLWaWLQJ WKH SURJUaPPHU¶V cKRLcH
PaNLQJ SURcHVV. TKHUH aUH a IHZ Za\V WR acKLHYH LW bH\RQd XVHU HdXcaWLRQ:

Ɣ MaNLQJ WKH aOWHUQaWH API PRUH UHadLO\ aYaLOabOH aQd IUHTXHQWO\ YLVLbOH WR WKH SURJUaPPHU
WKURXJK a WLJKW LQWHJUaWLRQ ZLWK WKH SURJUaPPLQJ HQYLURQPHQW.

Ɣ MaNLQJ WKH aOWHUQaWH API a ORcaO dHIaXOW WKURXJK SURacWLYH VXJJHVWLRQV aQd ZaUQLQJV LQ
cRdLQJ cRQWH[WV ZKHUH WKH ULVN RI cKRRVLQJ WKH ZURQJ API LV KLJK.

Ɣ HHOSLQJ SURJUaPPHUV ZULWH WHVW caVHV WKaW cRYHU HdJH caVHV ZKHUH WKH aOWHUQaWH API VKRXOd bH
XVHd UaWKHU WKaQ WKH dHIaXOW API.

TKH UHVW RI WKH SaSHU LV RUJaQL]Hd aV IROORZV. FLUVW, ZH UHYLHZ UHOaWHd ZRUN RQ API XVabLOLW\ aQd
cKRLcH aUcKLWHcWXUH. NH[W, ZH JR RYHU WKH dHVLJQ RI WKH H[SHULPHQW aQd PaLQ ILQdLQJV IURP aQaO\]LQJ
WKH UHVXOWV. LaVW, ZH dLVcXVV SRVVLbOH H[SOaQaWLRQV IRU WKH H[SHULPHQW UHVXOWV aQd WKH LPSOLcaWLRQV IRU
SURJUaPPLQJ HQYLURQPHQW dHVLJQ.

2. ReOaWed WRUN
WH cRQWH[WXaOL]H RXU ZRUN aW WKH LQWHUVHcWLRQ RI API XVabLOLW\ aQd WKH SV\cKRORJ\ RI PaNLQJ cKRLcHV.
DXH WR VSacH OLPLWV, ZH dHVcULbH PRVW UHOHYaQW ZRUN LQ WKHVH WZR aUHaV aQd H[SOaLQ WKH LQWHOOHcWXaO JaS
RXU UHVHaUcK addUHVVHV.

2.1. API UVabLOLW\
TKH LPSRUWaQcH RI API XVabLOLW\ KaV VWaUWHd JaLQLQJ UHcRJQLWLRQ LQ WKH LQdXVWU\ aIWHU PRUH WKaQ a
dHcadH RI adYRcac\ b\ API XVabLOLW\ UHVHaUcKHUV (COaUNH, 2004). M\HUV aQd SW\ORV (2016) aUJXH WKaW
XQXVabOH APIV caQ OHad WR bXJV, SHUIRUPaQcH dHJUadaWLRQ, aQd HYHQ VLJQLILcaQW VHcXULW\ SURbOHPV.
TKH\ VXJJHVW adRSWLQJ WKH KXPaQ-cHQWHUHd dHVLJQ aSSURacK LQ WKH SURcHVV RI dHVLJQLQJ APIV. TKLV

PPIG 2020 83 www.ppig.org

https://paperpile.com/c/t2YTpp/wM7m
https://paperpile.com/c/t2YTpp/Mw17/?noauthor=1

aSSURacK caOOV IRU HYaOXaWLRQ RI API dHVLJQ LQ accRUdaQcH ZLWK YaULRXV XVabLOLW\ SULQcLSOHV VXcK aV
WKRVH adaSWHd IURP NLHOVHQ¶V ³KHXULVWLc HYaOXaWLRQ´ JXLdHOLQHV (NLHOVHQ, 1994) aQd cRJQLWLYH
dLPHQVLRQV RI QRWaWLRQV (BOacNZHOO HW aO., 2001).

NRQHWKHOHVV, WKH cKaOOHQJH RI PaNLQJ API cKRLcHV LV XQdHU-H[aPLQHd. TKH PaLQ SaUadLJP LQ API
XVabLOLW\ UHVHaUcK KaV bHHQ IRcXVHd RQ WKH dHVLJQ RI a VLQJOH API RU a VLQJOH VHW RI APIV LQWHQdHd WR bH
XVHd WRJHWKHU. TKH cRPPRQ aSSURacK RI API XVabLOLW\ UHVHaUcK XVXaOO\ LQYROYHV RbVHUYLQJ KRZ
SURJUaPPHUV OHaUQ aQd XVH WKH API LQ TXHVWLRQ, LdHQWLI\LQJ XVHU H[SHULHQcH SURbOHPV, aQd PaNLQJ
UHcRPPHQdaWLRQV RQ KRZ WR LPSURYH WKH API¶V dHVLJQ aQd dRcXPHQWaWLRQ (IRU H[aPSOH, PLccLRQL HW aO.
(2013)). SRPH VWXdLHV cRPSaUHd PXOWLSOH dHVLJQV RI aQ API LQ RUdHU WR VHOHcW a PRUH XVabOH RQH
(SW\ORV HW aO., 2006). IQ a UaUH LQVWaQcH, UHVHaUcKHUV SaLd aWWHQWLRQ WR WKH SURbOHP RI cKRRVLQJ IURP
PXOWLSOH APIV IRU WKH VaPH SXUSRVH aQd IRXQd WKaW WKH SUHVHQcH RI WZR APIV ZLWK VLPLOaU QaPHV
caXVHd ZLdHVSUHad SURJUaPPHU cRQIXVLRQ (MXUSK\-HLOO HW aO., 2018).

FHZ VWXdLHV KaYH H[aPLQHd WKH SURJUaPPHU¶V abLOLW\ WR PaNH API cKRLcHV, HVSHcLaOO\ ZKHQ WKRVH
cKRLcHV LQYROYH VXbWOH WUadH-RIIV bHWZHHQ XVabLOLW\ aQd RWKHU JRaOV RI API dHVLJQ, VXcK aV cRUUHcWQHVV,
bacNZaUdV cRPSaWLbLOLW\, aQd cRPSXWaWLRQaO HIILcLHQc\ (SW\ORV & M\HUV, 2007). TKH SUHYaLOLQJ
SaUadLJP LQ API XVabLOLW\ UHVHaUcK RIWHQ LPSOLcLWO\ cRQVLdHUV WKRVH RWKHU JRaOV aV YaULabOHV
LQdHSHQdHQW IURP WKH API¶V XVabLOLW\ cKaUacWHULVWLcV. WKLOH WKLV LV a XVHIXO VLPSOLILcaWLRQ, LW dRHV QRW
VXIILcLHQWO\ UHcRJQL]H WKH LQKHUHQW WHQVLRQV aQd dHSHQdHQcLHV bHWZHHQ VRPH RI WKRVH API dHVLJQ
JRaOV. FRU H[aPSOH, a KLJK-OHYHO API LV RIWHQ PRUH XVabOH, bXW LW cRXOd OacN IOH[LbLOLW\ RU cRYHUaJH IRU
HdJH caVHV. HRZ ZHOO caQ SURJUaPPHUV XQdHUVWaQd aQd HYaOXaWH VXcK WUadHRIIV? AQd KRZ caQ API
aQd WRROLQJ dHVLJQHUV SURYLdH aSSURSULaWH VLJQLILHUV aQd cRQVWUaLQWV WR VXSSRUW WKH SURJUaPPHU LQ
PaNLQJ API cKRLcH dHcLVLRQV? WH bHOLHYH LW LV LPSRUWaQW WR H[WHQd WKH IRcXV RI API UHVHaUcK IURP a
VLQJOH VROXWLRQ WR aOO VROXWLRQV WKH SURJUaPPHU caQ cKRRVH IURP LQ RUdHU WR VaWLVI\ a SURJUaPPLQJ
UHTXLUHPHQW. TKLV VKLIW RI IRcaO SRLQW LV cULWLcaO WR addUHVV WKH cRPSOH[LW\ RI HYROYLQJ APIV aOUHad\
ZLdHO\ XVHd LQ SURdXcWLRQ.

2.2. ChRLce AUchLWecWXUe
TKHUH KaV bHHQ PXcK UHVHaUcK LQ WKH aUHa RI KXPaQ dHcLVLRQ-PaNLQJ aQd RSWLRQ VHOHcWLRQ LQ WKH IacH
RI aOWHUQaWLYHV. TKLV dRPaLQ RI LQYHVWLJaWLRQ LV H[SOLcLWO\ abRXW dHVLJQLQJ cKRLcHV, KHQcH WKH QaPH
³cKRLcH aUcKLWHcWXUH dHVLJQ,´ cRLQHd b\ TKaOHU aQd SXQVWHLQ (2009). OXU SaUWLcXOaU LQWHUHVW LV LQ WKH
Za\V LQ ZKLcK API cKRLcHV aUH SUHVHQWHd WR SURJUaPPHUV, aQd ZKHWKHU LW LV SRVVLbOH WR XQdHUVWaQd WKH
Za\V LQ ZKLcK dHIaXOWV H[SOLcLWO\ SUHVHQWHd RU WacLWO\ aVVXPHd caQ OHad WR SRRU cKRLcHV WKaW KaYH
QHJaWLYH dRZQVWUHaP cRQVHTXHQcHV IRU XVHUV RI WKH SURJUaP LQ TXHVWLRQ.

IW LV ZHOO NQRZQ IURP VWXdLHV RI cKRLcH aUcKLWHcWXUHV aQd XVHU LQWHUIacH dHVLJQ WKaW SHRSOH XVXaOO\
VWLcN ZLWK dHIaXOWV, XQOHVV WKHUH aUH cOHaU LQdLcaWLRQV RI cRVWV aQd bHQHILWV RI PaNLQJ aOWHUQaWLYH
cKRLcHV. ScKQHLdHU HW aO. (2018) KaYH VKRZQ WKaW UI dHVLJQ LQIOXHQcHV cKRLcHV, HYHQ XQLQWHQWLRQaOO\;
WKH\ VWaWH ³XVHU LQWHUIacH, IURP RUJaQL]aWLRQaO ZHbVLWH WR PRbLOH aSS, caQ WKXV bH YLHZHd aV a dLJLWaO
cKRLcH HQYLURQPHQW´ QXdJLQJ SHRSOH WR WaNH cHUWaLQ acWLRQV RYHU RWKHU b\ PRdLI\LQJ ZKaW LV SUHVHQWHd
RU KRZ LW LV SUHVHQWHd. TKH H[aPSOH WKH\ cLWH LV WKH STXaUH PRbLOH Sa\PHQW aSS ZKLcK SUHVHQWV a
³WLSSLQJ´ RSWLRQ b\ dHIaXOW; cXVWRPHUV PXVW VHOHcW ³QR WLSSLQJ´ LI WKH\ SUHIHU QRW WR JLYH a WLS ZKLcK
LV addLWLRQaO HIIRUW aQd aOVR WULJJHUV VRcLaO ³QRUPLQJ´ aQd VRcLaO bHORQJLQJ.

WLWK UHVSHcW WR dHIaXOWV VSHcLILcaOO\, JacKLPRZLc] HW aO. (2019) LQ a PHWa aQaO\VLV VXJJHVW WZR IacWRUV
WKaW SaUWLaOO\ accRXQW IRU WKH YaULabLOLW\ LQ dHIaXOWV¶ HIIHcWLYHQHVV: WKH cRQWH[WV aQd dRPaLQV ZKHUH
dHIaXOWV ZHUH SUHVHQWHd aQd WKHLU UHOaWLYH HaVH RI LPSOHPHQWaWLRQ. TKHLU ILQdLQJV aOVR SRLQW WR WKH
LPSRUWaQcH RI HYaOXaWLQJ WKH LQWHQdHd SRSXOaWLRQ¶V SUHIHUHQcHV ZKHQ dHcLdLQJ ZKHQ aQd KRZ WR
dHSOR\ dHIaXOWV. HXK HW aO. (2014) VKRZ WKaW WKH RbVHUYHd cKRLcHV RI RWKHUV caQ bHcRPH VRcLaO
dHIaXOWV, LQcUHaVLQJ WKHLU cKRLcH VKaUH. SRcLaO dHIaXOW HIIHcWV aUH a QRYHO IRUP RI VRcLaO LQIOXHQcH QRW
dXH WR QRUPaWLYH RU LQIRUPaWLRQaO LQIOXHQcH: SaUWLcLSaQWV ZHUH PRUH OLNHO\ WR PLPLc RbVHUYHd cKRLcHV
ZKHQ cKRRVLQJ LQ SULYaWH WKaQ LQ SXbOLc aQd ZKHQ VWaNHV ZHUH ORZ UaWKHU WKaQ KLJK.

TKH HPSLULcaOO\ RbVHUYHd dLIILcXOW\ RI PaNLQJ UaWLRQaO cKRLcHV, XQdHU WKH LQIOXHQcH RI dHIaXOWV LQ
SaUWLcXOaU aQd RWKHU cKRLcH aUcKLWHcWXUH LQWHUYHQWLRQV LQ JHQHUaO, KaV bHHQ VXbMHcW WR VHYHUaO dLIIHUHQW
H[SOaQaWLRQV abRXW KXPaQ cRJQLWLRQ aQd UHaVRQLQJ. OQH RI WKRVH H[SOaQaWLRQV LQYRNHV WKH QRWLRQ RI
boXnded rationalit\, LQ ZKLcK SLPRQ (1996) aUJXHV WKaW WKH dHcLVLRQ PaNHU LV RIWHQ OLPLWHd b\ WKH

PPIG 2020 84 www.ppig.org

https://paperpile.com/c/t2YTpp/TkHn
https://paperpile.com/c/t2YTpp/kkOC
https://paperpile.com/c/t2YTpp/glLv/?noauthor=1
https://paperpile.com/c/t2YTpp/B7S4
https://paperpile.com/c/t2YTpp/wUmT
https://paperpile.com/c/t2YTpp/kuNp
https://paperpile.com/c/t2YTpp/XhF2/?noauthor=1
https://paperpile.com/c/t2YTpp/o9m4/?noauthor=1
https://paperpile.com/c/t2YTpp/xspP/?noauthor=1
https://paperpile.com/c/t2YTpp/WPWy/?noauthor=1
https://paperpile.com/c/t2YTpp/xhMz/?noauthor=1

aYaLOabLOLW\ RI LQIRUPaWLRQ aQd WKHLU cRJQLWLYH abLOLW\ WR SURcHVV aOO WKH LQIRUPaWLRQ SHUWLQHQW WR WKH
dHcLVLRQ LQ RUdHU WR PaNH WKH RSWLPaO cKRLcH. AV a UHVXOW, WKH dHcLVLRQ PaNHU ZRXOd ³VaWLVILcH´ ±
VHWWOLQJ IRU a UHaVRQabOH cKRLcH bXW QRW QHcHVVaULO\ WKH bHVW RQH. AQRWKHU H[SOaQaWLRQ SRLQWV WR WKH
failXre of imagination. SKacNOH (SKacNOH, 1964) cRQWHQdV WKaW ³CKRLcH LV aPRQJVW LPaJLQHd
H[SHULHQcHV,´ aQd AXJLHU (2000), HOabRUaWLQJ RQ SKacNOH¶V WKHRU\, VXJJHVWV WKaW ³CKRLcH LV aPRQJVW
LPaJLQHd H[SHULHQcHV,´ aQd ³HacK aOWHUQaWLYH LV cRQVLdHUHd ZLWK a YaULabOH aPRXQW RI dLVbHOLHI.´ TKLV
SRLQW RI YLHZ LV SaUWLcXOaUO\ UHOHYaQW WR dHcLVLRQ PaNLQJ LQ VRIWZaUH HQJLQHHULQJ, aV SRPHUV (2017)
KaV ZaUQHd abRXW WKH cKaOOHQJH RI UHaVRQLQJ abRXW SURJUaP bHKaYLRU LQ cRPSOH[VRIWZaUH V\VWHPV.

IW LV ZRUWK QRWLQJ WKaW WKH aIRUHPHQWLRQHd aVVLJQPHQW RI dLVbHOLHI WR dLIIHUHQW LPaJLQHd VcHQaULRV LV
OLNHO\ a SURcHVV adaSWLYH WR VXbWOH cXHV aYaLOabOH LQ WKH dHcLVLRQ-PaNLQJ cRQWH[W. TKURXJK a QXPbHU RI
OabRUaWRU\ H[SHULPHQWV, McKHQ]LH aW aO. (McKHQ]LH HW aO., 2018) dHPRQVWUaWH WKaW a QXPbHU RI
aSSaUHQW ³bLaVHV´ LQ PaNLQJ cKRLcHV VWHP IURP adaSWLYH VHQVLWLYLW\ WR VXbWOH cRQWH[WXaO cXHV LQ WKH
cKRLcH HQYLURQPHQW, ZKLcK d\QaPLcaOO\ XSdaWH WKH dHcLVLRQ PaNHU¶V bHOLHI abRXW WKH dHVLUabOH cRXUVH
RI acWLRQ RU WKH aWWULbXWH dLVWULbXWLRQV LQ WKH SRSXOaWLRQ. FRU H[aPSOH, WKH dHIaXOW RSWLRQ LV RIWHQ
SHUcHLYHd aV WKH UHcRPPHQdaWLRQ IURP VRPHRQH LQ a SRVLWLRQ RI aXWKRULW\.

TKLV SHUVSHcWLYH RQ d\QaPLc bHOLHI aQd SUHIHUHQcH cRQVWUXcWLRQ QRW RQO\ SURYLdHV a dLIIHUHQW YLHZ RI
WKH SV\cKRORJ\ aQd UaWLRQaOLW\ RI dHcLVLRQ PaNLQJ, LW aOVR VXJJHVWV a dLIIHUHQW aSSURacK WR cKRLcH
aUcKLWHcWXUH dHVLJQ. WKHUHaV WKH WUadLWLRQaO QXdJH aSSURacK WULHV WR HQJLQHHU VSHcLILc dHcLVLRQ
RXWcRPHV, RIWHQ b\ UHURXWLQJ aSSaUHQW bLaVHV VR WKaW WKH\ SRLQW LQ dHVLUabOH dLUHcWLRQV, WKH aXWKRUV
VXJJHVW aQ aOWHUQaWH aSSURacK IRcXVHd RQ IacLOLWaWLQJ WKH SURcHVVHV RI dHcLVLRQ PaNLQJ. FRU LQVWaQcH,
McKHQ]LH aW aO. (2018) caOOHd IRU RYHUW PHVVaJLQJ LQVWHad RI cRYHUW ³QXdJHV´ WR VXSSRUW dHcLVLRQ
PaNHUV b\ LQcUHaVLQJ LQIRUPaWLRQ VaOLHQcH LQ accRUdaQcH WR WKH LQIRUPaWLRQ¶V UHOHYaQcH aQd WKH
dHcLVLRQ PaNHU¶V aWWHQWLRQaO caSacLW\. TKH abRYH SHUVSHcWLYHV aQd UHVXOWV KaYH LQIRUPHd RXU SURbOHP
IUaPLQJ, LQWHUSUHWaWLRQ RI daWa, aQd dHYHORSPHQW RI PLWLJaWLRQV IRU WKH API XVabLOLW\ aQd cRUUHcWQHVV
PLVaOLJQPHQW SURbOHP ZH H[aPLQHd.

3. SWXd\ DeVigQ
3.1. OYeUYLeZ
TR PHaVXUH WKH LPSacW RI WKH API XVabLOLW\ aQd cRUUHcWQHVV PLVaOLJQPHQW, ZH cRQdXcWHd a ZHb-baVHd
cRQWUROOHd H[SHULPHQW. IQ SaUWLcXOaU, ZH ZaQWHd WR cKHcN KRZ PXcK RI WKH SURbOHP caQ bH PLWLJaWHd
b\ JHWWLQJ WKH SURJUaPPHU WR UHad dRcXPHQWaWLRQ abRXW WKH SURbOHP, VLQcH API dHVLJQHUV RIWHQ UHVRUW
WR ³XVHU HdXcaWLRQ´ aV WKH ILUVW aQd HaVLHVW WR LPSOHPHQW UHVSRQVH WR LVVXHV UHOaWHd WR XVHU H[SHULHQcH.

TKH H[SHULPHQW ZaV LPSOHPHQWHd aV a VcHQaULR-baVHd TXHVWLRQQaLUH XVLQJ WKH VXUYH\ VRIWZaUH
QXaOWULcV aQd adPLQLVWHUHd RYHU WKH IQWHUQHW. TKH TXHVWLRQQaLUH Kad IRXU PaLQ SaUWV:

Ɣ Screener: PaUWLcLSaQWV RI WKH H[SHULPHQW ZHUH UHcUXLWHd IURP DaUW¶V XVHU cRPPXQLW\ ZLWKRXW
LQcHQWLYHV. AW WKH bHJLQQLQJ RI WKH H[SHULPHQW, HacK SaUWLcLSaQW aQVZHUHd a IHZ TXHVWLRQV
abRXW WKHLU bacNJURXQd aQd WKHLU NQRZOHdJH abRXW DaUW LQ RUdHU WR dHWHUPLQH WKHLU HOLJLbLOLW\.

Ɣ Code snippet revieZ tasks: TKLV ZaV WKH PaLQ bRd\ RI WKH TXHVWLRQQaLUH. TKH SaUWLcLSaQW ZaV
aVNHd WR aVVHVV WKH cRUUHcWQHVV RI cRdH VQLSSHWV ZULWWHQ IRU VL[cRPPRQ WH[W PaQLSXOaWLRQ
VcHQaULRV (VHH VXbVHcWLRQ 3.3). PaUWLcLSaQWV LQ WKH WUHaWPHQW JURXSV (PRUH abRXW H[SHULPHQWaO
cRQdLWLRQV bHORZ) UHcHLYHd LQIRUPaWLRQ abRXW WKH JUaSKHPH cOXVWHUV SURbOHP LQ WKH DaUW
SWULQJ API aIWHU ScHQaULR 1, VLPXOaWLQJ aQ H[SHULHQcH RI JHWWLQJ HdXcaWHd abRXW WKH SURbOHP.

Ɣ Reflect on assessment results: AIWHU UHYLHZLQJ WKH cRdH VQLSSHWV LQ WKRVH VL[VcHQaULRV,
SaUWLcLSaQWV LQ WKH WUHaWPHQW JURXSV ZHUH JLYHQ aQ RSSRUWXQLW\ WR UHYLHZ aQd UHIOHcW RQ WKH
cRUUHcW aVVHVVPHQWV RI WKH cRdH VQLSSHWV WKH\ H[aPLQHd.

Ɣ Post-test questionnaire: IQ WKH OaVW SaUW RI WKH H[SHULPHQW, SaUWLcLSaQWV aQVZHUHd TXHVWLRQV
abRXW WKHLU aWWLWXdHV, SUHIHUHQcHV, aQd SULRU H[SHULHQcH WKaW PLJKW KHOS cRQWH[WXaOL]H WKHLU
UHVSRQVHV.

TKH IXOO TXHVWLRQQaLUH dHVLJQ LV aYaLOabOH LQ WKH ASSHQdL[.

PPIG 2020 85 www.ppig.org

https://paperpile.com/c/t2YTpp/SLaX
https://paperpile.com/c/t2YTpp/DOnu/?noauthor=1
https://paperpile.com/c/t2YTpp/rf1d/?noauthor=1
https://paperpile.com/c/t2YTpp/qmqt
https://paperpile.com/c/t2YTpp/qmqt/?noauthor=1

3.2. E[SeULPeQWaO cRQdLWLRQV
TKH H[SHULPHQW Kad a cRQWURO cRQdLWLRQ aQd WZR WUHaWPHQW cRQdLWLRQV. WH UaQdRPO\ aVVLJQHd WKH 183
SaUWLcLSaQWV WR RQH RI WKH WKUHH H[SHULPHQWaO cRQdLWLRQV. TKH WKUHH cRQdLWLRQV SULPaULO\ dLIIHUHd LQ WKH
aPRXQW RI LQIRUPaWLRQ abRXW WKH JUaSKHPH cOXVWHUV SURbOHP JLYHQ WR WKH SaUWLcLSaQW aIWHU WKH\
HYaOXaWHd WKH cRdH VQLSSHW LQ ScHQaULR 1, ZKLcK ZaV abRXW H[WUacWLQJ a VXbVWULQJ (VKRZQ LQ FLJ. 1).

FigXre 1 - The first of the si[code assessment scenarios participants Zent throXgh in the e[periment.
The code snippet coXld prodXce incorrect resXlts Zhen the inpXt te[t had grapheme clXsters.

SSHcLILcaOO\, WKH cRQWURO JURXS UHcHLYHd QR IHHdbacN aW aOO aIWHU aVVHVVLQJ VcHQaULR 1 aQd cRQWLQXHd WR
UHYLHZ WKH UHVW RI WKH cRdH VQLSSHWV. BRWK WUHaWPHQW JURXSV UHcHLYHd baVLc LQIRUPaWLRQ abRXW WKH IacW
WKaW WKH DaUW SWULQJ API cRXOd SURdXcH LQcRUUHcW UHVXOWV ZKHQ H[WUacWLQJ a VXbVWULQJ IURP WH[W WKaW
LQcOXdHd JUaSKHPH cOXVWHUV aQd aQ H[aPSOH RI UHYLVLQJ WKH VQLSSHW XVLQJ WKH cKaUacWHUV SacNaJH.
TUHaWPHQW JURXS 1 ZaV JLYHQ IXUWKHU H[SOaQaWLRQ abRXW WKH XQdHUO\LQJ UTF-16 UHSUHVHQWaWLRQ RI WH[W
LQ DaUW¶V dHIaXOW SWULQJ API aQd ZK\ WKH API ZRQ¶W KaQdOH JUaSKHPH cOXVWHUV cRUUHcWO\. TabOH 1
VXPPaUL]HV WKH dLIIHUHQcHV bHWZHHQ WKH WKUHH H[SHULPHQWaO cRQdLWLRQV.

E[SHULPHQWaO CRQdLWLRQ E[SOaQaWLRQ RHcHLYHd aIWHU ScHQaULR 1
CRQWURO NR H[SOaQaWLRQ

TUHaWPHQW 1 FXOO H[SOaQaWLRQ
TUHaWPHQW 2 LLJKW H[SOaQaWLRQ

Table 1 ± The differences betZeen the three e[perimental conditions.

3.3. E[SeULPeQWaO WaVNV
AV aIRUHPHQWLRQHd, HacK SaUWLcLSaQW ZaV aVNHd WR UHYLHZ cRdH VQLSSHWV ZULWWHQ IRU WKH IROORZLQJ VL[
WH[W PaQLSXOaWLRQ VcHQaULRV (VHH aQ H[aPSOH LQ FLJ. 1):

1) E[WUacWLQJ a VXbVWULQJ

2) VaOLdaWLQJ HPaLO addUHVVHV XVLQJ a UHJXOaU H[SUHVVLRQ

3) CKHcNLQJ cKaUacWHU OLPLW

4) SSOLWWLQJ a VWULQJ RQ aQ HPRML

5) CUHaWLQJ LQLWLaOV IURP a ILUVW QaPH aQd a OaVW QaPH

PPIG 2020 86 www.ppig.org

6) TXUQLQJ RYHUIORZQ WH[W LQWR aQ HOOLSVLV

TKH cRdH VQLSSHWV LQ WKH 6 VcHQaULRV aOO XVHd WKH DaUW SWULQJ API WR SURcHVV WKHLU UHVSHcWLYH WH[W LQSXW.
APRQJ WKHP, ScHQaULR 1, 3, 5, aQd 6 ZRXOd SURdXcH XQH[SHcWHd UHVXOWV ZKHQ JUaSKHPH cOXVWHUV ZHUH
SaUW RI WKH WH[W bHLQJ PaQLSXOaWHd. PURJUaPPHUV cRXOd XVH WKH cKaUacWHUV SacNaJH LQVWHad aV a
UHPHd\. TKH H[SHULPHQW XVHd WKRVH VcHQaULRV WR cKHcN IaOVH QHJaWLYHV ± IaLOXUHV WR LdHQWLI\ SRWHQWLaO
SURJUaPPLQJ HUURUV. IQ cRQWUaVW, ScHQaULR 2 aQd ScHQaULR 4 ZHUH dHVLJQHd WR cKHcN IaOVH SRVLWLYHV ±
WKH SRWHQWLaO RI SaUWLcLSaQWV RYHUacWLQJ WR WKH LQIRUPaWLRQ SURYLdHd abRXW JUaSKHPH cOXVWHUV aQd KHQcH
PLVWaNHQO\ dLVPLVVLQJ WKH cRUUHcW XVH RI SWULQJ API LQ WKRVH WZR VcHQaULRV.

3.4. PRVW-WeVW TXeVWLRQQaLUe
TKH SRVW-WHVW TXHVWLRQQaLUH Kad WZR SaJHV. TKH ILUVW SaJH ZaV IRcXVHd RQ WKH SaUWLcLSaQW¶V aWWLWXdHV
WRZaUdV WKH JUaSKHPH cOXVWHUV SURbOHP aQd WKHLU SUHIHUUHd dHIaXOW VWULQJ daWa UHSUHVHQWaWLRQ (VHH FLJ.
2). TKLV VHcWLRQ RI WKH TXHVWLRQQaLUH ZaV RQO\ dLVSOa\Hd WR SaUWLcLSaQWV LQ WKH WUHaWPHQW JURXSV, VLQcH
WKH cRQWURO JURXS ZaV QRW LQIRUPHd RI WKH JUaSKHPH cOXVWHUV SURbOHP LQ WKH H[SHULPHQW.

FigXre 2 - One of the qXestions in the post-test qXestionnaire is aboXt preferred string representation
in Dart¶s String API.

OQ WKH VHcRQd SaJH RI WKH TXHVWLRQQaLUH, WKH SaUWLcLSaQW ZaV aVNHd WR SURYLdH WKHLU bacNJURXQd
LQIRUPaWLRQ, VXcK aV aZaUHQHVV RI WKH JUaSKHPH cOXVWHUV SURbOHP, SULRU NQRZOHdJH abRXW DaUW¶V
cKaUacWHUV SacNaJH, aQd IaPLOLaULW\ ZLWK SZLIW¶V SWULQJ API, ZKLcK PLJKW KHOS H[SOaLQ WKHLU bHKaYLRU
aQd aWWLWXdHV VKRZQ LQ WKH H[SHULPHQW.

3.5. H\SRWheVeV aQd daWa aQaO\VLV
AV PHQWLRQHd, SaUW RI WKH H[SHULPHQWaO JRaO ZaV WR PHaVXUH KRZ PXcK ZH caQ UHO\ RQ SURJUaPPHU
HdXcaWLRQ (H.J., UHadLQJ dRcXPHQWaWLRQ) WR KHOS WKH SURJUaPPHU PaNH VRXQd API cKRLcHV aQd KHQcH
PLWLJaWH WKH LPSacW RI WKH XVabLOLW\ aQd cRUUHcWQHVV PLVaOLJQPHQW. TKXV, WKH H[SHULPHQW ZaV dHVLJQHd
WR WHVW WKH IROORZLQJ K\SRWKHVHV:

Ɣ H1: PaUWLcLSaQWV ZKR Kad SULRU H[SRVXUH WR WKH JUaSKHPH cOXVWHUV SURbOHP LQ WH[W
PaQLSXOaWLRQ ZHUH PRUH OLNHO\ WR LdHQWLI\ WKH SURbOHP LQ cRdH VQLSSHWV.

Ɣ H2: PaUWLcLSaQWV ZKR ZHUH LQIRUPHd RI WKH JUaSKHPH cOXVWHUV SURbOHP HaUO\ LQ WKH H[SHULPHQW
(L.H., WKH WZR WUHaWPHQW JURXSV) ZRXOd bH abOH WR PRUH accXUaWHO\ aVVHVV WKH cRUUHcWQHVV RI WKH
cRdH VQLSSHWV WKaQ WKRVH ZKR ZHUHQ¶W (L.H., WKH cRQWURO JURXS).

Ɣ H3: PaUWLcLSaQWV ZKR ZHUH JLYHQ PRUH LQ-dHSWK H[SOaQaWLRQV RI WKH JUaSKHPH cOXVWHUV
SURbOHP HaUO\ LQ WKH H[SHULPHQW (L.H., WUHaWPHQW JURXS 1) ZRXOd dR bHWWHU LQ LdHQWLI\LQJ WKH
SURbOHP LQ WKH cRdH VQLSSHWV WKaQ WKRVH JLYHQ a baVLc H[SOaQaWLRQ (L.H., WUHaWPHQW JURXS 2).

Ɣ H4: TKH PaMRULW\ RI SaUWLcLSaQWV ZRXOd SUHIHU a SWULQJ API aZaUH RI JUaSKHPH cOXVWHUV b\
dHIaXOW aIWHU UHIOHcWLQJ RQ WKHLU RZQ abLOLW\ WR PaNH cRUUHcW API cKRLcHV.

PPIG 2020 87 www.ppig.org

4. FiQdiQgV
IQ WKLV VHcWLRQ, ZH UHSRUW WKH PaLQ ILQdLQJV IURP aQaO\]LQJ WKH UHVXOWV RI WKH H[SHULPHQW b\ WKH RUdHU
RI WKH K\SRWKHVHV VWaWHd abRYH. DXH WR VSacH OLPLWV, ZH RPLW WKH UHVXOWV abRXW IaOVH SRVLWLYHV LQ
HYaOXaWLQJ ScHQaULR 2 aQd 4. AVVHVVPHQW UHVXOWV RI ScHQaULR 2 ZHUH aOVR PXddOHd b\ SaUWLcLSaQWV¶ OacN
RI H[SHULHQcH ZLWK UHJXOaU H[SUHVVLRQV.

4.1. PULRU e[SRVXUe WR Whe gUaShePe cOXVWeUV SURbOeP VhRZed a QegOLgLbOe effecW
AV H[SHcWHd, a PLQRULW\ RI RXU 183 SaUWLcLSaQWV UHSRUWHd SULRU aZaUHQHVV RI WKH JUaSKHPH cOXVWHUV
SURbOHP. SSHcLILcaOO\, 53 VaLd WKH\ Kad RQO\ KHaUd RI WKH LVVXH, aQd 22 VaLd WKH\ Kad UXQ LQWR WKH LVVXH
WKHPVHOYHV. TKH aQaO\VLV bHORZ ZaV IRcXVHd RQ SaUWLcLSaQWV¶ aVVHVVPHQW RI WKH cRdH VQLSSHW LQ
ScHQaULR 1, bHIRUH SaUWLcLSaQWV LQ WKH WZR WUHaWPHQW JURXSV ZHUH LQIRUPHd RI WKH JUaSKHPH cOXVWHUV
SURbOHP aIWHU WKLV VcHQaULR, aV dHVcULbHd LQ WKH SWXd\ DHVLJQ VHcWLRQ. AV a UHPLQdHU, WKH cRUUHcW
UHVSRQVH WR WKH aVVHVVPHQW TXHVWLRQ LQ ScHQaULR 1 VKRXOd bH ³NR.´

APRQJ WKH 53 SaUWLcLSaQWV ZKR Kad KHaUd RI WKH LVVXH bHIRUH, 26% PadH a cRUUHcW aVVHVVPHQW RI WKH
cRdH VQLSSHW LQ ScHQaULR 1. AQd aPRQJ WKH 23 SaUWLcLSaQWV ZKR cOaLPHd WR KaYH ILUVW-KaQd H[SHULHQcH
ZLWK WKH SURbOHP, 23% PadH a cRUUHcW aVVHVVPHQW. BRWK ZHUH RQO\ VOLJKWO\ bHWWHU WKaQ WKH SaUWLcLSaQWV
ZKR UHSRUWHd QR NQRZOHdJH RI WKH LVVXH SULRU WR aVVHVVLQJ ScHQaULR 1, aV VKRZQ LQ WKH JUHHQ SRUWLRQV
RI WKH baU cKaUW LQ FLJ. 3. A cKL-VTXaUHd WHVW dLdQ¶W VKRZ VWaWLVWLcaO VLJQLILcaQcH LQ WKH dLIIHUHQcHV
bHWZHHQ WKRVH ZLWKRXW SULRU NQRZOHdJH aQd WKRVH ZKR ZHUH aZaUH RI WKH SURbOHP WR VRPH dHJUHH.
TKHUHIRUH, WKH daWa dRHV QRW VXSSRUW H1.

FigXre 3 - Participants¶ assessments of the code snippet in Scenario 1 broken doZn b\ their prior
aZareness of the grapheme clXsters problem. The correct ansZer shoXld be ³No.´

4.2. E[SOaLQLQg Whe gUaShePe cOXVWeUV SURbOeP XSfURQW ZaV XVefXO bXW LQVXffLcLeQW
IQ WKH H[SHULPHQW, bRWK WUHaWPHQW JURXSV ZHUH LQIRUPHd RI WKH cRUUHcW aVVHVVPHQW RI WKH cRdH VQLSSHW
LQ ScHQaULR 1 aQd JLYHQ dLIIHUHQW aPRXQWV RI H[SOaQaWLRQ abRXW ZK\ WKH VQLSSHW cRXOd SURdXcH
LQcRUUHcW UHVXOWV. SLQcH WKLV LQIRUPaWLRQ ZaV JLYHQ ULJKW bHIRUH WKRVH SaUWLcLSaQWV ZHQW RQ aVVHVVLQJ
WKH UHVW RI WKH cRdH VQLSSHWV, LW¶V QRW VXUSULVLQJ WKaW WKH\ SHUIRUPHd PXcK bHWWHU WKaQ WKH cRQWURO JURXS
(VHH FLJ. 4). FRU H[aPSOH, LQ ScHQaULR 3 (cRXQWLQJ WKH QXPbHU RI cKaUacWHUV), RQO\ 15.5% RI WKH
SaUWLcLSaQWV LQ WKH cRQWURO JURXS ZHUH abOH WR dHWHUPLQH WKaW WKH VQLSSHW cRXOd SURdXcH ZURQJ UHVXOWV
ZKHQ JUaSKHPH cOXVWHUV ZHUH SaUW RI WKH VWULQJ, ZKLOH 46.3% RI WUHaWPHQW JURXS 1 aQd 36.2% RI
WUHaWPHQW JURXS 2 ZHUH abOH WR dR VR. MRUHRYHU, cKL-VTXaUHd WHVWV VKRZHd VWaWLVWLcaOO\ VLJQLILcaQW
dLIIHUHQcHV acURVV WKH WKUHH JURXSV¶ aVVHVVPHQW SHUIRUPaQcH IRU WKH WKUHH VcHQaULRV (#2, #5, aQd #6),
ZKHUH WKH SURYLdHd cRdH VQLSSHWV cRXOd KaYH WURXbOH SURcHVVLQJ JUaSKHPH cOXVWHUV.

PPIG 2020 88 www.ppig.org

FigXre 4 - The percentage of participants Zho made a correct assessment of the code snippet in
Scenario 3, 5, and 6 across three e[perimental conditions

DLVaSSRLQWLQJO\, bRWK WUHaWPHQW JURXSV VWLOO PadH PRUH LQcRUUHcW aVVHVVPHQWV WKaQ cRUUHcW
aVVHVVPHQWV. OQ aYHUaJH, WUHaWPHQW JURXS 1 (UHcHLYHd aQ LQ-dHSWK H[SOaQaWLRQ abRXW WKH JUaSKHPH
cOXVWHUV SURbOHP) aQd WUHaWPHQW JURXS 2 (UHcHLYHd a baVLc H[SOaQaWLRQ) acKLHYHd aQ aYHUaJH
aVVHVVPHQW VXccHVV UaWH RI 45% aQd 33%, UHVSHcWLYHO\. IQ cRQcOXVLRQ, WKH daWa dRHV VXSSRUW H2, bXW
WKH HIIHcW RI SURYLdLQJ WKH SaUWLcLSaQWV ZLWK WKH dRcXPHQWaWLRQ RI WKH JUaSKHPH cOXVWHU SURbOHP aQd
WKH cKaUacWHUV SacNaJH LV PXcK ZHaNHU WKaQ PaQ\ PLJKW KaYH H[SHcWHd.

4.3. The aPRXQW Rf e[SOaQaWLRQ RQO\ Pade a VPaOO dLffeUeQce
IQ WKH H[SHULPHQWaO dHVLJQ, ZH JaYH WUHaWPHQW JURXS 1 a dHHSHU aQd PRUH WKRURXJK H[SOaQaWLRQ LQ WKH
KRSH WKaW SaUWLcLSaQWV LQ WKLV JURXS cRXOd aSSO\ WKLV NQRZOHdJH WR WKH aVVHVVPHQW RI VXbVHTXHQW WH[W
PaQLSXOaWLRQ VcHQaULRV WKaW ZHUH dLIIHUHQW IURP ScHQaULR 1. TKH daWa VKRZV WKaW WUHaWPHQW JURXS 1 dLd
VHHP WR SHUIRUP bHWWHU WKaQ WUHaWPHQW JURXS 2 LQ HYHU\ VcHQaULR ZKHUH XVLQJ WKH SWULQJ API ZaV
SURbOHPaWLc (VHH FLJ. 4). TKH OaUJHVW dLIIHUHQcH ZaV RbVHUYHd LQ ScHQaULR 6, ZKHUH WKH cRdH VQLSSHW
QHHdV WR HQIRUcH a cKaUacWHU OLPLW LQ a WH[W ILHOd aQd UHSOacH aQ\ RYHUIORZQ WH[W ZLWK aQ HOOLSVHV. IQ WKLV
VcHQaULR, 53.7% RI SaUWLcLSaQWV LQ WUHaWPHQW JURXS 1 PadH a cRUUHcW aVVHVVPHQW, ZKLOH RQO\ 32.8% RI
WKH WUHaWPHQW JURXS 2 ZHUH abOH WR dR VR. HRZHYHU, WKH dLIIHUHQcH bHWZHHQ WKH WZR JURXSV¶
SHUIRUPaQcH LQ ScHQaULR 6 ZaV QRW VWaWLVWLcaOO\ VLJQLILcaQW accRUdLQJ WR a cKL-VTXaUHd WHVW (S = 0.055),
VR ZHUH WKH WHVW UHVXOWV IRU WKH RWKHU WZR VcHQaULRV.

4.4. PaUWLcLSaQWV OacNed cRQfLdeQce LQ WheLU abLOLW\ WR PaNe cRUUecW API chRLceV
AV PHQWLRQHd LQ WKH VWXd\ dHVLJQ, SaUWLcLSaQWV LQ WKH WUHaWPHQW JURXSV ZHUH JLYHQ aQ RSSRUWXQLW\ WR
cRPSaUH WKHLU RZQ aVVHVVPHQWV RI WKH cRdLQJ VcHQaULRV ZLWK WKH cRUUHcW aVVHVVPHQWV aQd UHad a bULHI
H[SOaQaWLRQ abRXW HacK VcHQaULR. WH ZHUH cXULRXV abRXW KRZ WKaW RSSRUWXQLW\ WR UHIOHcW RQ WKHLU
aVVHVVPHQW SHUIRUPaQcH PLJKW LQIOXHQcH WKHLU RSLQLRQV abRXW KRZ WKH SWULQJ API VKRXOd bH dHVLJQHd.

RHVSRQdLQJ WR a PXOWLSOH cKRLcH TXHVWLRQ LQ WKH SRVW-WHVW TXHVWLRQQaLUH, abRXW KaOI RI WKRVH
SaUWLcLSaQWV VaLd WKH\ ZRXOd SUHIHU a VWULQJ UHSUHVHQWaWLRQ aZaUH RI JUaSKHPH cOXVWHUV b\ dHIaXOW,
JLYHQ WKH WUadH RII bHWZHHQ cRUUHcWQHVV aQd a SRWHQWLaO KLW WR cRPSXWaWLRQaO HIILcLHQc\ (VHH FLJ. 5).

PPIG 2020 89 www.ppig.org

FigXre 5 - Participants¶ preferred defaXlt string representation as stated in the post-test qXestionnaire

SRPH SaUWLcLSaQWV YRLcHd cRQcHUQV RYHU WKHLU abLOLW\ WR bH cRQVWaQWO\ RQ WKH ORRNRXW IRU VXbWOH LVVXHV
dXH WR PLVKaQdOLQJ RI JUaSKHPH cOXVWHUV:

³EYen Zhen \oX Xnderstand hoZ this cXrrentl\ Zorks in theor\, it is EXTREMELY eas\ to
forget in practise. The cXrrent behaYior WILL create man\, man\ bXgs.´

³...making the api catch those errors b\ defaXlt Zill improYe the qXalit\ of apps since most
deYelopers don't handle emoji Xse cases Xntil the\ haYe a real crash.´

FRU WKH PLQRULW\ ZKR SUHIHUUHd UTF-16 aV WKH dHIaXOW VWULQJ UHSUHVHQWaWLRQ (L.H., WKH VWaWXV TXR LQ
DaUW), VRPH IHOW WKHUH ZaV YaOXH WR bH cRQVLVWHQW ZLWK RWKHU OaQJXaJHV:

³CXrrent behaYioXr is consistent Zith other langXage paradigms Zhich alloZ loZ leYel
manipXlations.´

OWKHUV WKRXJKW HPRMLV ZHUH VWLOO UaUH LQ WKHLU SaUWLcXOaU XVH caVHV:

³In man\ Xse-cases, emojis probabl\ Zon't shoZ Xp. Let's sa\ I'm deYeloping an application
for an insXrance compan\, or ma\be a medical info app. In these cases, it's highl\ Xnlikel\ to
haYe emojis dXe to the professional natXre of the app.´

TR VXP XS, WKH daWa ZHaNO\ VXSSRUWV H4, bXW a ORW RI SaUWLcLSaQWV ZHUH XQabOH WR PaNH XS WKHLU PLQd,
UHIOHcWLQJ WKH cRPSOH[LW\ RI WKH WUadH-RIIV LQYROYHd LQ PRdHUQL]LQJ a IRXQdaWLRQaO API VXcK aV SWULQJ
LQ a PaWXUH SURJUaPPLQJ OaQJXaJH.

5. DiVcXVViRQ
IQ WKLV VHcWLRQ, ZH dLVcXVV ZKaW PLJKW KaYH cRQWULbXWHd WR WKH dLIILcXOW\ RI PaNLQJ API cKRLcHV
RbVHUYHd LQ WKH H[SHULPHQW, WKH LPSOLcaWLRQV IRU dHVLJQLQJ SURJUaPPLQJ WRROV aQd HQYLURQPHQWV, aQd
WKH OaUJHU TXHVWLRQ RI KRZ SULRULWLHV aQd YaOXHV aUH IUaPHd aQd acWHd XSRQ LQ VRIWZaUH dHYHORSPHQW.

5.1. FacWRUV e[aceUbaWLQg Whe LPSacW Rf PLVaOLgQPeQW
OXU ILQdLQJV VKRZ WKaW WKH PLVaOLJQPHQW bHWZHHQ API XVabLOLW\ aQd cRUUHcWQHVV caQ bH dLIILcXOW IRU
WKH API XVHU WR dHaO ZLWK. TKH cRQYHQWLRQaO ZLVdRP PLJKW OHad XV dRZQ a SaWK RI PRUH XVHU
HdXcaWLRQ abRXW WKH SURbOHP WKURXJK dRcXPHQWaWLRQ, bXW WKH UHVXOWV RI RXU H[SHULPHQW, ZKLcK LQ PaQ\
Za\V VLPXOaWHd VXcK aQ aSSURacK, VXJJHVW WKaW LW LV LQVXIILcLHQW. SR ZK\ dLd RXU VWXd\ SaUWLcLSaQWV,
aIWHU WKH\ Kad bHHQ H[SRVHd WR WKH JUaSKHPH cOXVWHUV SURbOHP HLWKHU bHIRUH WKH VWXd\ RU dXULQJ LW, VWLOO
H[SHULHQcHd VR PXcK dLIILcXOW\ LdHQWLI\LQJ LW LQ WKH VLPSOH cRdH VQLSSHWV WKH\ H[aPLQHd? TKHUH cRXOd
bH VHYHUaO cRQWULbXWLQJ IacWRUV, VRPH RI ZKLcK ZH KaYH WRXcKHd RQ ZKHQ dHVcULbLQJ UHOaWHd ZRUN:

Ɣ InsXfficient absorption and recall of information. AOWKRXJK WKH H[SOaQaWLRQ abRXW WKH
JUaSKHPH cOXVWHUV SURbOHP aQd WKH cKaUacWHUV SacNaJH ZaV SURYLdHd WR aOO SaUWLcLSaQWV LQ WKH
WUHaWPHQW JURXSV, WKHUH ZaV QR JXaUaQWHH WKaW HYHU\ SaUWLcLSaQW ZaV abOH RU ZLOOLQJ WR IXOO\
abVRUb WKLV LQIRUPaWLRQ LQ WKH ILUVW SOacH aQd WR UHcaOO WKaW LQIRUPaWLRQ OaWHU ZKHQ LW ZaV
QHHdHd LQ HYaOXaWLQJ addLWLRQaO VcHQaULRV. TKLV ZaV HVVHQWLaOO\ boXnded rationalit\ aW ZRUN.

PPIG 2020 90 www.ppig.org

Ɣ The failXre of imagination. IW cRXOd bH dLIILcXOW WR LPaJLQH aQ HdJH caVH WKaW ZRXOd SURdXcH
LQcRUUHcW UHVXOWV. GUaSKHPH cOXVWHUV LV a cRPSOLcaWHd cRQcHSW LQ XQLcRdH. OQO\ VRPH HPRMLV
aQd QRQ-ASCII cKaUacWHUV QHHd WR bH UHSUHVHQWHd LQ PRUH WKaQ RQH UTF-16 cRdH XQLW, aQd
RQO\ VSHcLILc W\SHV RI WH[W PaQLSXOaWLRQV ZRXOd bUHaN WKHP. AV a UHVXOW, LW¶V KaUd IRU
SURJUaPPHUV WR cRPH XS ZLWK H[aPSOH VWULQJV WR YHULI\ WKH cRUUHcWQHVV RI WKHLU cRdH.

Ɣ The lack of learning transfer (PHUNLQV HW aO., 1992). SRPH SaUWLcLSaQWV PLJKW KaYH XQdHUVWRRd
ZK\ WKH ILUVW cRdLQJ VcHQaULR ZaV SURbOHPaWLc aQd WKH JUaSKHPH cOXVWHU LVVXH LQ abVWUacW aIWHU
UHcHLYLQJ IHHdbacN, bXW WKH\ PLJKW QRW KaYH dHYHORSHd WKH abLOLW\ WR aSSO\ WKLV NQRZOHdJH WR
WKH aVVHVVPHQW RI VXbVHTXHQW cRdLQJ VcHQaULRV.

Ɣ The habitXal Xse of APIs and roXtini]ed operations. BHcaXVH PaQLSXOaWLQJ WH[W LV aQ
H[WUHPHO\ cRPPRQ WaVN LQ SURJUaPPLQJ, WKH Za\V RI VROYLQJ dLIIHUHQW WH[W PaQLSXOaWLRQ
SURbOHPV aUH OLNHO\ WR KaYH bHcRPH URXWLQHV LI QRW KabLWV. IW LV WKXV dLIILcXOW WR cULWLcaOO\
HYaOXaWH IaPLOLaU cRdH VQLSSHWV XVHd VR PaQ\ WLPHV bHIRUH ZLWKRXW LVVXHV.

WKHQ RQH RU PRUH RI WKHVH IacWRUV aUH aW SOa\, WKH LPSacW RI WKH PLVaOLJQPHQW bHWZHHQ API XVabLOLW\
aQd cRUUHcWQHVV caQ bH HVSHcLaOO\ KaUd WR RYHUcRPH.

5.2. IPSOLcaWLRQV fRU deVLgQ
WKLOH RXU UHVXOWV VXJJHVW WKaW LW LV LPSRUWaQW WR aYRLd RU UHPRYH WKLV W\SH RI PLVaOLJQPHQW LQ API
dHVLJQ ZKHQHYHU SRVVLbOH, LW LV QRW aOZa\V IHaVLbOH ZKHQ HYROYLQJ aQ H[LVWLQJ SDK ZLWK PaQ\ XVHUV
aQd UHaO-ZRUOd aSSOLcaWLRQV bXLOW RQ WRS RI LW. FRUcLQJ a UHaOLJQPHQW RI WKH API cRUUHcWQHVV aQd
XVabLOLW\ cRXOd bUHaN bacNZaUdV cRPSaWLbLOLW\ aQd OHad WR HcRV\VWHP IUaJPHQWaWLRQ.

NRQHWKHOHVV, WKH SDK dHVLJQHU cRXOd VWLOO cRQVLdHU WKH IROORZLQJ PLWLJaWLRQV WKaW VSHcLILcaOO\ addUHVV
WKH WKUHH IacWRUV cRQWULbXWLQJ WR WKH dLIILcXOW\ RI LdHQWLI\LQJ aQd PaQaJLQJ WKH PLVaOLJQPHQW.

Ɣ Making the choices Yisible and readil\ aYailable. FRU H[aPSOH, FOXWWHU, a SRSXOaU UI
IUaPHZRUN IRU DaUW, KaV LQWHJUaWHd WKH cKaUacWHUV SacNaJH LQ LWV SDK, VR FOXWWHU SURJUaPPHUV
dRQ¶W QHHd WR PaQXaOO\ LPSRUW LW WR WKHLU SURMHcWV. IQ addLWLRQ, WKH CKaUacWHUV API LV aOVR PadH
aYaLOabOH RQ SWULQJ RbMHcWV aQd OLWHUaOV WKURXJK H[WHQVLRQ PHWKRdV. TKHUHIRUH, LQ a FOXWWHU UI
SURJUaPPLQJ cRQWH[W, LW¶V PXcK HaVLHU WR JHW UHPLQdHd RI WKLV QHZ, PRUH URbXVW Za\ RI
PaQLSXOaWLQJ WH[W WKURXJK WKH IDE¶V aXWRcRPSOHWH IacLOLW\ (VHH FLJ. 6).

FigXre 6 - DiscoYering the characters API is mXch easier after FlXtter integrated it into its SDK.

Ɣ ProYiding assistance in creating XsefXl test cases. TKLV VWUaWHJ\ LQWHQdV WR addUHVV WKH IaLOXUH
RI LPaJLQaWLRQ LQ PaNLQJ API cKRLcHV. SSHcLILcaOO\, SURJUaPPLQJ WRROV QHHd WR KHOS
SURJUaPPHUV ZULWH WHVW caVHV WKaW cRYHU JUaSKHPH cOXVWHUV b\ VXJJHVWLQJ H[aPSOH LQSXW
VWULQJV aQd VKRZLQJ ZaUQLQJV ZKHQ H[LVWLQJ WHVW caVHV IaLO WR cRYHU HdJH caVHV. IQ addLWLRQ WR
aXJPHQWLQJ aXWRPaWHd WHVWV, a WRRO VLPXOaWLQJ dLYHUVH WH[W LQSXWV, VXcK aV HPRMLV aQd
QRQ-ASCII cKaUacWHUV, cRXOd KHOS WKH dHYHORSHU dLVcRYHU WH[W PaQLSXOaWLRQ bXJV HaUO\.

Ɣ Breaking habitXal Xse of API b\ making neZ local defaXlts. WKHQ LW¶V LQIHaVLbOH WR cKaQJH WKH
JORbaO dHIaXOW, LW PLJKW bH SRVVLbOH WR HQacW ORcaO dHIaXOWV WR PLWLJaWH ULVNV RI PLVXVLQJ APIV.
FRU H[aPSOH, a UI WRRONLW RIWHQ UHTXLUHV WKH SURJUaPPHU WR cUHaWH a caOObacN IXQcWLRQ WR
KaQdOH XVHU LQSXW. TKLV SaUWLcXOaU cRQWH[W LV KLJKO\ VXVcHSWLbOH WR LVVXHV UHOaWHd WR JUaSKHPH

PPIG 2020 91 www.ppig.org

https://paperpile.com/c/t2YTpp/vDFx

cOXVWHUV. TKH cRdH HdLWRU cRXOd SURacWLYHO\ cRPSOHWH a WHPSOaWH IRU VXcK caOObacN IXQcWLRQV
ZKHUH WKH JUaSKHPH-aZaUH API LV XVHd LQ WKH JHQHUaWHd cRdH. AddLWLRQaOO\, WKH cRdH HdLWRU
caQ XVH OLQWV WR ZaUQ SURJUaPPHUV LQ SRWHQWLaO KLJK-ULVN WH[W PaQLSXOaWLRQ cRQWH[WV.

5.3. DeYeORSeU LQceQWLYeV aQd YaOXeV
TKH QHHd IRU SURcHVVLQJ JUaSKHPH cOXVWHUV IaU SUHdaWHV HPRMLV. IQ IacW, WKH\ KaYH bHHQ XVHd WR HQcRdH
QRQ-ASCII cKaUacWHUV LQ PaQ\ QaWXUaO OaQJXaJHV IRU aOPRVW 20 \HaUV (DaYLV, 2001). BXW ZK\ dLd WKLV
SURbOHP, a SULPH H[aPSOH RI API XVabLOLW\ aQd cRUUHcWQHVV PLVaOLJQPHQW, VHHP WR dUaZ OLWWOH LQWHUHVW
IURP WKH SURJUaPPLQJ OaQJXaJH dHVLJQ cRPPXQLW\ XQWLO UHcHQWO\?

TR aQVZHU WKLV TXHVWLRQ, ZH QHHd WR cULWLcaOO\ H[aPLQH VRIWZaUH dHYHORSHUV¶ LQcHQWLYHV aQd WKH
HcRQRPLcV RI dHVLJQLQJ aQd bXLOdLQJ VRIWZaUH IRU a dLYHUVH XVHU SRSXOaWLRQ. TKH YaOXH RI bHLQJ
cRUUHcW LQ WKH SUHVHQcH RI JUaSKHPH cOXVWHUV LQ WH[W PaQLSXOaWLRQ ZaV SURbabO\ cRQVLdHUHd OHVV
LPSRUWaQW WKaQ SURYLdLQJ a VWUaLJKWIRUZaUd, IaPLOLaU, aQd HIILcLHQW SWULQJ API XQWLO WZR XQdHUO\LQJ
HcRQRPLc IRUcHV bHcaPH PRUH SURPLQHQW LQ WKH OaVW IHZ \HaUV:

Ɣ TKH UaSLd JURZWK RI bRWK WKH SURSRUWLRQ RI IQWHUQHW XVHUV ZKR VSHaN a OaQJXaJH RWKHU WKaQ
EQJOLVK aQd WKH SURSRUWLRQ RI QRQ-EQJOLVK ZHb SaJHV (WLNLSHdLa cRQWULbXWRUV, 2020)

Ɣ TKH ULVH RI HPRMLV LQ daLO\ HOHcWURQLc cRPPXQLcaWLRQV (DaQHVL, 2016)

MRUH UHcHQWO\ dHVLJQHd SURJUaPPLQJ OaQJXaJHV, VXcK aV SZLIW, PadH WKH JUaSKHPH cOXVWHUV a
ILUVW-cOaVV cLWL]HQ LQ LWV SWULQJ API. TKLV cKaQJH RI aWWLWXdH PLUURUV WKH JUadXaO ULVH RI accHVVLbLOLW\,
ZKLcK aOVR VXIIHUHd IURP the failXre of imagination. FRU H[aPSOH, aQ abOH-bRdLHd ZHb dHYHORSHU cRXOd
KaYH WURXbOH WKLQNLQJ WKURXJK WKH H[SHULHQcH RI WKH VLWH IURP WKH SHUVSHcWLYH RI a YLVXaOO\ LPSaLUHd
XVHU. MRdHUQ dHYHORSHU WRROV SURYLdH IacLOLWLHV WR VLPXOaWH WKH H[SHULHQcH RI XVHUV ZLWK accHVVLbLOLW\
QHHdV. WH bHOLHYH a VLPLOaU aSSURacK caQ bH IUXLWIXO LQ KHOSLQJ dHYHORSHUV bXLOd aZaUHQHVV aQd
HPSaWK\ WRZaUdV XVHUV ZLWK dLYHUVH WH[W LQSXW QHHdV.

6. CRQcOXViRQV
IQ WKLV SaSHU, ZH SURSRVHd aQd H[aPLQHd WKH SURbOHP RI PLVaOLJQHd API XVabLOLW\ aQd cRUUHcWQHVV ±
WKH PRUH XVabOH API SURdXcHV OHVV cRUUHcW UHVXOWV WKaQ a KaUdHU WR XVH RU OHVV IaPLOLaU API. WH
PHaVXUHd KRZ ZHOO SURJUaPPHUV caQ KaQdOH WKLV W\SH RI PLVaOLJQPHQW WKURXJK a cRQWUROOHd
H[SHULPHQW LQ WKH cRQWH[W RI PaQLSXOaWLQJ XQLcRdH WH[W WKaW LQcOXdHV JUaSKHPH cOXVWHUV, ZLdHO\ XVHd
WR UHSUHVHQW HPRMLV aQd cKaUacWHUV LQ QRQ-EQJOLVK VcULSWV. TKRVH cKaUacWHUV aUH QRW SURSHUO\ VXSSRUWHd
b\ WKH dHIaXOW SWULQJ API LQ PRVW PaLQVWUHaP SURJUaPPLQJ OaQJXaJHV, aQd WKH\ RIWHQ UHTXLUH add-RQ
OLbUaULHV WR SURSHUO\ SURcHVV WKHP. OXU H[SHULPHQW UHVXOWV VXJJHVW WKaW LW LV dLIILcXOW IRU PaQ\
SURJUaPPHUV WR LdHQWLI\ LQVWaQcHV ZKHUH WKH dHIaXOW SWULQJ API cRXOd SURdXcH LQcRUUHcW UHVXOWV LQ
cRPPRQ WH[W PaQLSXOaWLRQ VcHQaULRV, dHVSLWH XVHU HdXcaWLRQ aQd ZaUQLQJV SURYLdHd HaUOLHU LQ WKH
H[SHULPHQW LQ WKH IRUP RI dRcXPHQWaWLRQ. TKH ILQdLQJV OHad WR VSHcLILc LPSOLcaWLRQV IRU dHVLJQLQJ
SURJUaPPLQJ HQYLURQPHQWV WKaW IacLOLWaWH WKH SURcHVV RI PaNLQJ API cKRLcHV LQ RUdHU WR PLWLJaWH VXcK
PLVaOLJQPHQWV.

7. AcNQRZOedgePeQWV
WH WKaQN RXU VWXd\ SaUWLcLSaQWV IRU WKHLU WLPH. IQ addLWLRQ, WKLV VWXd\ ZRXOd QRW bH SRVVLbOH ZLWKRXW
WKH VXSSRUW aQd IHHdbacN IURP IaQ HLcNVRQ, MLcKaHO TKRPVHQ, LaVVH NLHOVHQ aQd LHaI PHWHUVHQ IURP
WKH FOXWWHU WHaP aQd WKH DaUW WHaP aW GRRJOH.

8. RefeUeQceV

AXJLHU, M. (2000). RaWLRQaOLW\, LPaJLQaWLRQ aQd LQWHOOLJHQcH: VRPH bRXQdaULHV LQ KXPaQ

dHcLVLRQ-PaNLQJ. IndXstrial and Corporate Change, 9(4), 659±681.

BOacNZHOO, A. F., BULWWRQ, C., CR[, A., GUHHQ, T. R. G., GXUU, C., KadRda, G., KXWaU, M. S., LRRPHV,

M., NHKaQLY, C. L., PHWUH, M., RRaVW, C., RRH, C., WRQJ, A., & YRXQJ, R. M. (2001). CRJQLWLYH

PPIG 2020 92 www.ppig.org

https://paperpile.com/c/t2YTpp/s7YQ
https://paperpile.com/c/t2YTpp/D9Cq
https://paperpile.com/c/t2YTpp/HR7E
http://paperpile.com/b/t2YTpp/DOnu
http://paperpile.com/b/t2YTpp/DOnu
http://paperpile.com/b/t2YTpp/kkOC
http://paperpile.com/b/t2YTpp/kkOC

DLPHQVLRQV RI NRWaWLRQV: DHVLJQ TRROV IRU CRJQLWLYH THcKQRORJ\. IQ LectXre Notes in CompXter

Science (SS. 325±341). KWWSV://dRL.RUJ/10.1007/3-540-44617-6_31

COaUNH, S. (2004). MHaVXULQJ API XVabLOLW\. Dr. Dobb¶s JoXrnal WindoZs, S6±S9.

DaQHVL, M. (2016). The Semiotics of Emoji: The Rise of VisXal LangXage in the Age of the Internet.

BORRPVbXU\ PXbOLVKLQJ.

DaYLV, M. (2001, MaUcK 11). Te[t BoXndaries (Version 1). UQLcRdH THcKQLcaO RHSRUWV.

KWWSV://ZZZ.XQLcRdH.RUJ/UHSRUWV/WU29/WU29-1.KWPO

DaYLV, M., & CKaSPaQ, C. (2020, FHbUXaU\ 19). Unicode Te[t Segmentation (ReYision 37). UQLcRdH

THcKQLcaO RHSRUWV. KWWSV://XQLcRdH.RUJ/UHSRUWV/WU29/

FaKO, S., HaUbacK, M., PHUO, H., KRHWWHU, M., & SPLWK, M. (2013). RHWKLQNLQJ SSL dHYHORSPHQW LQ aQ

aSSLILHd ZRUOd. Proceedings of the 2013 ACM SIGSAC Conference on CompXter &

CommXnications SecXrit\, 49±60.

HXK, Y. E., VRVJHUaX, J., & MRUHZHdJH, C. K. (2014). SRcLaO dHIaXOWV: ObVHUYHd cKRLcHV bHcRPH

cKRLcH dHIaXOWV. The JoXrnal of ConsXmer Research, 41(3), 746±760.

JacKLPRZLc], J. M., DXQcaQ, S., WHbHU, E. U., & JRKQVRQ, E. J. (2019). WKHQ aQd ZK\ dHIaXOWV

LQIOXHQcH dHcLVLRQV: a PHWa-aQaO\VLV RI dHIaXOW HIIHcWV. BehaYioXral PXblic Polic\ , 3(2),

159±186.

McKHQ]LH, C. R. M., SKHU, S., LHRQJ, L. M., M�OOHU-TUHdH, J., & OWKHUV. (2018). CRQVWUXcWHd

SUHIHUHQcHV, UaWLRQaOLW\, aQd cKRLcH aUcKLWHcWXUH. ReYieZ of BehaYioral Economics, 5(3-4),

337±360.

MLcURVRIW. (2018, Ma\ 31). SXrrogates and SXpplementar\ Characters.

KWWSV://dRcV.PLcURVRIW.cRP/HQ-XV/ZLQdRZV/ZLQ32/LQWO/VXUURJaWHV-aQd-VXSSOHPHQWaU\-cKaUacWHUV

MXUSK\-HLOO, E., SadRZVNL, C., HHad, A., DaXJKWU\, J., MacYHaQ, A., JaVSaQ, C., & WLQWHU, C. (2018).

DLVcRYHULQJ API UVabLOLW\ PURbOHPV aW ScaOH. 2018 IEEE/ACM 2nd International Workshop on

API Usage and EYolXtion (WAPI), 14±17.

M\HUV, B. A., & SW\ORV, J. (2016). IPSURYLQJ API XVabLOLW\. CommXnications of the ACM, 59(6),

62±69.

NLHOVHQ, J. (1994, ASULO 24). 10 HeXristics for User Interface Design: Article b\ Jakob Nielsen.

PPIG 2020 93 www.ppig.org

http://paperpile.com/b/t2YTpp/kkOC
http://paperpile.com/b/t2YTpp/kkOC
http://dx.doi.org/10.1007/3-540-44617-6_31
http://paperpile.com/b/t2YTpp/wM7m
http://paperpile.com/b/t2YTpp/HR7E
http://paperpile.com/b/t2YTpp/HR7E
http://paperpile.com/b/t2YTpp/s7YQ
https://www.unicode.org/reports/tr29/tr29-1.html
http://paperpile.com/b/t2YTpp/BBYG
http://paperpile.com/b/t2YTpp/BBYG
https://unicode.org/reports/tr29/
http://paperpile.com/b/t2YTpp/3KEb
http://paperpile.com/b/t2YTpp/3KEb
http://paperpile.com/b/t2YTpp/3KEb
http://paperpile.com/b/t2YTpp/WPWy
http://paperpile.com/b/t2YTpp/WPWy
http://paperpile.com/b/t2YTpp/xspP
http://paperpile.com/b/t2YTpp/xspP
http://paperpile.com/b/t2YTpp/xspP
http://paperpile.com/b/t2YTpp/qmqt
http://paperpile.com/b/t2YTpp/qmqt
http://paperpile.com/b/t2YTpp/qmqt
http://paperpile.com/b/t2YTpp/pxz0
https://docs.microsoft.com/en-us/windows/win32/intl/surrogates-and-supplementary-characters
http://paperpile.com/b/t2YTpp/wUmT
http://paperpile.com/b/t2YTpp/wUmT
http://paperpile.com/b/t2YTpp/wUmT
http://paperpile.com/b/t2YTpp/Mw17
http://paperpile.com/b/t2YTpp/Mw17
http://paperpile.com/b/t2YTpp/TkHn

NLHOVHQ NRUPaQ GURXS. KWWSV://ZZZ.QQJURXS.cRP/aUWLcOHV/WHQ-XVabLOLW\-KHXULVWLcV/

PHUNLQV, D. N., SaORPRQ, G., & OWKHUV. (1992). TUaQVIHU RI OHaUQLQJ. International Enc\clopedia of

EdXcation, 2, 6452±6457.

PLccLRQL, M., FXULa, C. A., & MH\HU, B. (2013). AQ EPSLULcaO SWXd\ RI API UVabLOLW\. IQ 2013 ACM /

IEEE International S\mposiXm on Empirical SoftZare Engineering and MeasXrement.

KWWSV://dRL.RUJ/10.1109/HVHP.2013.14

ScKQHLdHU, C., WHLQPaQQ, M., & VRP BURcNH, J. (2018). DLJLWaO QXdJLQJ: JXLdLQJ RQOLQH XVHU cKRLcHV

WKURXJK LQWHUIacH dHVLJQ. CommXnications of the ACM, 61(7), 67±73.

SKacNOH, G. L. S. (1964). General thoXght-schemes and the economist: the second WoolZich

Economic LectXre deliYered before the WoolZich Pol\technic on 3 March 1964. WRROZLcK

PRO\WHcKQLc, DHSaUWPHQW RI EcRQRPLcV aQd BXVLQHVV SWXdLHV.

SLPRQ, H. A. (1996). The Sciences of the Artificial - 3rd Edition (3Ud Hd.). TKH MIT PUHVV.

SRPHUV, J. (2017, SHSWHPbHU 26). TKH CRPLQJ SRIWZaUH ASRcaO\SVH. The Atlantic.

KWWSV://ZZZ.WKHaWOaQWLc.cRP/WHcKQRORJ\/aUcKLYH/2017/09/VaYLQJ-WKH-ZRUOd-IURP-cRdH/540393/

SW\ORV, J., COaUNH, S., & M\HUV, B. A. (2006). CRPSaULQJ API DHVLJQ CKRLcHV ZLWK UVabLOLW\ SWXdLHV:

A CaVH SWXd\ aQd FXWXUH DLUHcWLRQV. PPIG, 17.

SW\ORV, J., & M\HUV, B. (2007). MaSSLQJ WKH SSacH RI API DHVLJQ DHcLVLRQV. IQ IEEE S\mposiXm on

VisXal LangXages and HXman-Centric CompXting (VL/HCC 2007).

KWWSV://dRL.RUJ/10.1109/YOKcc.2007.44

TKaOHU, R. H., & SXQVWHLQ, C. R. (2009). NXdge: ImproYing Decisions AboXt Health, Wealth, and

Happiness (RHYLVHd & E[SaQdHd HdLWLRQ). PHQJXLQ BRRNV.

WLNLSHdLa cRQWULbXWRUV. (2020, AXJXVW 22). LangXages Xsed on the Internet. WLNLSHdLa, TKH FUHH

EQc\cORSHdLa. KWWSV://HQ.ZLNLSHdLa.RUJ/Z/LQdH[.SKS?WLWOH=LaQJXaJHV_XVHd_RQ_WKH_IQWHUQHW

CURQTYLVW, H; TKaOHU, R (2004). DHVLJQ cKRLcHV LQ SULYaWL]Hd VRcLaO VHcXULW\ V\VWHPV: LHaUQLQJ IURP

WKH SZHdLVK H[SHULHQcH. APHULcaQ EcRQRPLc RHYLHZ. 94 (2): 424±8.

DLQQHU, I., JRKQVRQ, E. J., GROdVWHLQ, D. G., & LLX, K. (2011). PaUWLWLRQLQJ dHIaXOW HIIHcWV: ZK\ SHRSOH

cKRRVH QRW WR cKRRVH. JRXUQaO RI E[SHULPHQWaO PV\cKRORJ\: ASSOLHd, 17(4), 332.

PPIG 2020 94 www.ppig.org

http://paperpile.com/b/t2YTpp/TkHn
https://www.nngroup.com/articles/ten-usability-heuristics/
http://paperpile.com/b/t2YTpp/vDFx
http://paperpile.com/b/t2YTpp/vDFx
http://paperpile.com/b/t2YTpp/glLv
http://paperpile.com/b/t2YTpp/glLv
http://paperpile.com/b/t2YTpp/glLv
http://dx.doi.org/10.1109/esem.2013.14
http://paperpile.com/b/t2YTpp/o9m4
http://paperpile.com/b/t2YTpp/o9m4
http://paperpile.com/b/t2YTpp/SLaX
http://paperpile.com/b/t2YTpp/SLaX
http://paperpile.com/b/t2YTpp/SLaX
http://paperpile.com/b/t2YTpp/xhMz
http://paperpile.com/b/t2YTpp/rf1d
https://www.theatlantic.com/technology/archive/2017/09/saving-the-world-from-code/540393/
http://paperpile.com/b/t2YTpp/B7S4
http://paperpile.com/b/t2YTpp/B7S4
http://paperpile.com/b/t2YTpp/kuNp
http://paperpile.com/b/t2YTpp/kuNp
http://paperpile.com/b/t2YTpp/kuNp
http://dx.doi.org/10.1109/vlhcc.2007.44
http://paperpile.com/b/t2YTpp/XhF2
http://paperpile.com/b/t2YTpp/XhF2
http://paperpile.com/b/t2YTpp/D9Cq
http://paperpile.com/b/t2YTpp/D9Cq
https://en.wikipedia.org/w/index.php?title=Languages_used_on_the_Internet

JacKLPRZLc], J. M., DXQcaQ, S., WHbHU, E. U., & JRKQVRQ, E. J. (2019). WKHQ aQd ZK\ dHIaXOWV

LQIOXHQcH dHcLVLRQV: A PHWa-aQaO\VLV RI dHIaXOW HIIHcWV. BHKaYLRXUaO PXbOLc PROLc\, 3(2), 159-186.

JRKQVRQ, E. J., SKX, S. B., DHOOaHUW, B. G., FR[, C., GROdVWHLQ, D. G., HlXbO, G., ... & WaQVLQN, B.

(2012). BH\RQd QXdJHV: TRROV RI a cKRLcH aUcKLWHcWXUH. MaUNHWLQJ LHWWHUV, 23(2), 487-504.

JRKQVRQ, E.J.; GROdVWHLQ, D.G. (2003). DR DHIaXOWV SaYH LLYHV? ScLHQcH. 302 (5649): 1338±1339.

KaKQHPaQ, D., & TYHUVN\, A. (2013). CKRLcHV, YaOXHV, aQd IUaPHV. IQ HaQdbRRN RI WKH IXQdaPHQWaOV

RI ILQaQcLaO dHcLVLRQ PaNLQJ: PaUW I (SS. 269-278).

HXK, Y. E., VRVJHUaX, J., & MRUHZHdJH, C. K. (2014). SRcLaO dHIaXOWV: ObVHUYHd cKRLcHV bHcRPH

cKRLcH dHIaXOWV. JRXUQaO RI CRQVXPHU RHVHaUcK, 41(3), 746-760.

LaUULcN, R.P. aQd SROO, J.B (2008). TKH MPG IOOXVLRQ. ScLHQcH. 320 (5883): 1593±4.

McKHQ]LH, C. R., SKHU, S., LHRQJ, L. M., & M�OOHU-TUHdH, J. (2018). CRQVWUXcWHd SUHIHUHQcHV,

UaWLRQaOLW\, aQd cKRLcH aUcKLWHcWXUH. RHYLHZ RI BHKaYLRUaO EcRQRPLcV, 5(3-4), 337-360.

ScKHLbHKHQQH, B., GUHLIHQHdHU, R. aQd TRdd, P. (2010). CaQ WKHUH HYHU bH WRR PaQ\ RSWLRQV? A

PHWa-aQaO\WLc UHYLHZ RI cKRLcH RYHUORad. JRXUQaO RI CRQVXPHU RHVHaUcK. 37 (3): 409±25.

ScKQHLdHU, C., WHLQPaQQ, M., & VRP BURcNH, J. (2018). DLJLWaO QXdJLQJ: JXLdLQJ RQOLQH XVHU cKRLcHV

WKURXJK LQWHUIacH dHVLJQ. CRPPXQLcaWLRQV RI WKH ACM, 61(7), 67-73.

PPIG 2020 95 www.ppig.org

ASSeQdi[: QXeVWiRQQaiUe DeVigQ
ScUeeQeU
TKaQN \RX IRU \RXU LQWHUHVW LQ SaUWLcLSaWLQJ LQ WKLV UHVHaUcK VWXd\ RQ WKH XVabLOLW\ RI DaUW¶V API. TR
dHWHUPLQH \RXU HOLJLbLOLW\, SOHaVH aQVZHU TXHVWLRQV RQ WKLV SaJH.

II \RX TXaOLI\, \RX caQ H[SHcW WR cRPSOHWH WKH VXUYH\ ZLWKLQ 15 PLQXWHV. POHaVH PaNH VXUH \RX ZLOO
QRW bH LQWHUUXSWHd. II \RX RSHQHd WKLV VXUYH\ RQ a PRbLOH dHYLcH, ZH NLQdO\ UHTXHVW \RX WR ILOO LW RXW
IURP a dHVNWRS/OaSWRS cRPSXWHU WR HQVXUH cRUUHcW UHQdHULQJ RI WKH cRQWHQW.

B\ VXbPLWWLQJ \RXU UHVSRQVHV LQ WKLV VXUYH\, \RX acNQRZOHdJH WKaW \RX aUH aW OHaVW 18 \HaUV RI aJH
aQd WKaW GRRJOH aQd LWV aIILOLaWHV Pa\ XVH \RXU UHVSRQVHV WR LPSURYH GRRJOH¶V SURdXcWV aQd VHUYLcHV
LQ accRUdaQcH ZLWK GRRJOH PULYac\ PROLc\.

QXHVWLRQ CULWHULRQ

Q2 WKaW LV \RXU OHYHO RI H[SHULHQcH ZLWK SURJUaPPLQJ LQ
DaUW?

Ɣ NR H[SHULHQcH
Ɣ AZaUHQHVV
Ɣ NRYLcH
Ɣ IQWHUPHdLaWH
Ɣ AdYaQcHd
Ɣ E[SHUW

CULWHULRQ: PXVW bH
³IQWHUPHdLaWH´ RU KLJKHU WR
bH HOLJLbOH.

Q3 HRZ SURILcLHQW aUH \RX LQ EQJOLVK?
Ɣ NRQH
Ɣ BHJLQQHU
Ɣ IQWHUPHdLaWH
Ɣ AdYaQcHd
Ɣ NaWLYH

CULWHULRQ: PXVW bH
³IQWHUPHdLaWH´ RU KLJKHU WR
bH HOLJLbOH.

Q4 HRZ cRQILdHQW aUH \RX LQ XVLQJ WKH IROORZLQJ DaUW APIV?

OSWLRQV
Ɣ AV\Qc, aZaLW aQd IXWXUH
Ɣ SWULQJ
Ɣ DaWHV aQd WLPHV
Ɣ MaWK
Ɣ RHJXOaU H[SUHVVLRQV

LHYHOV
Ɣ NRW aW aOO cRQILdHQW
Ɣ SOLJKWO\ cRQILdHQW
Ɣ MRdHUaWHO\ cRQILdHQW
Ɣ QXLWH cRQILdHQW
Ɣ TRWaOO\ cRQILdHQW

CULWHULRQ: cRQILdHQcH LQ XVLQJ
WKH SWULQJ API PXVW bH
³PRdHUaWHO\ cRQILdHQW´ RU
KLJKHU WR bH HOLJLbOH.

IQWURdXcWLRQ
IQ WKLV VXUYH\, ZH aUH PHaVXULQJ WKH H[SHULHQcH RI UHadLQJ DaUW SURJUaPV IRU WKH SXUSRVH RI
LPSURYLQJ LWV API. YRX ZLOO JR WKURXJK a QXPbHU RI cRdLQJ VcHQaULRV aQd dHWHUPLQH LI a JLYHQ cRdH
VQLSSHW caQ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ HacK VcHQaULR. BRWK \RXU aQVZHUV aQd WKH WLPH \RX
VSHQd RQ aQVZHULQJ HacK TXHVWLRQ ZLOO bH UHcRUdHd LQ WKLV VXUYH\.

PPIG 2020 96 www.ppig.org

http://www.google.com/privacy.html

POHaVH UHad WKH LQIRUPaWLRQ LQ WKH VXUYH\ caUHIXOO\, ZKLcK Pa\ KHOS \RX bHWWHU aVVHVV WKRVH cRdLQJ
VcHQaULRV. TR HQVXUH WKH YaOLdLW\ RI WKH VWXd\ UHVXOWV, ZH UHTXHVW \RX WR QRW VKaUH WKH VXUYH\ ZLWK
RWKHUV. OQ bHKaOI RI WKH DaUW WHaP, WKaQN \RX IRU \RXU WLPH.

SceQaULR 1 (VXbVWULQg)

NRWH: WKH SXUSRVH RI WKLV WaVN LV WR LQWURdXcH WKH JUaSKHPH cOXVWHUV LVVXH WR SaUWLcLSaQWV LQ WKH
WUHaWPHQW JURXSV. TUHaWPHQW JURXS 1 ZLOO UHcHLYH addLWLRQaO cRQcHSWXaO H[SOaQaWLRQ RI WKH SURbOHP.

IPaJLQH WKaW \RX ZaQW WR LPSOHPHQW a IXQcWLRQ WKaW dHOHWHV WKH OaVW cKaUacWHU IURP a VWULQJ aQd UHWXUQV
WKH UHVXOW aV a QHZ VWULQJ. TKH VWULQJ cRPHV IURP XVHU LQSXW LQ a WH[W bR[.

YRX cRPH acURVV WKH IROORZLQJ VQLSSHW RQOLQH:

String skipLastChar(String text) {

return text.substring(0, text.length - 1);

}

NRWH: WKH VXbVWULQJ (LQW VWaUWIQdH[, [LQW HQdIQdH[])) PHWKRd UHWXUQV WKH VXbVWULQJ RI WKLV VWULQJ WKaW
H[WHQdV IURP VWaUWIQdH[, LQcOXVLYH, WR HQdIQdH[, H[cOXVLYH. FRU H[aPSOH, ³KHOOR´.VXbVWULQJ(0, 4)
UHWXUQV ³KHOO´.

QXHVWLRQ DLVSOa\ LRJLc

Q7 DRHV WKLV VQLSSHW cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ
WKH VcHQaULR (aVVXPLQJ WKH V\QWa[RI WKH cRdH KaV bHHQ cKHcNHd)?

Ɣ YHV
Ɣ NR
Ɣ Ma\bH

Q9 WKaW dR \RX WKLQN cRXOd bH PLVVLQJ RU LQcRUUHcW LQ WKLV VQLSSHW,
LI aQ\?

SKRZ LI aQVZHU WR Q7 LV
³NR´ RU ³Ma\bH´

SceQaULR 1 feedbacN

NRWH: WKLV bORcN ZLOO bH dLVSOa\Hd WR bRWK WUHaWPHQW JURXSV bXW QRW WKH cRQWURO JURXS.

TKH cRUUHcW aQVZHU LV ³NR´, bHcaXVH WKH cRdH VQLSSHW ZRQ¶W SaVV WKH WHVW bHORZ.

THVW cRdH:

test("skipLastChar(text) removes the last character from the string", () {

var string Ó 'Hi ';

expect(skipLastChar(string), equals('Hi '));

});

PPIG 2020 97 www.ppig.org

THVW UHVXOWV:

Expected: 'Hi '

Actual: 'Hi ???'

Which: is different. Both strings start the same, but the actual value

also has the following trailing characters: ???

IW WXUQV RXW DaUW¶V SWULQJ API dRHVQ¶W KaQdOH VRPH HPRMLV aQd QRQ-EQJOLVK cKaUacWHUV (H.J., Jࡇ ,각, aQd
िष) ZHOO. TKH IRUPaO WHUP IRU WKRVH cKaUacWHUV LV H[WHQdHd JUaSKHPH cOXVWHUV. TKH JRRd QHZV LV WKaW
DaUW KaV aQ H[SHULPHQWaO SacNaJH caOOHd cKaUacWHUV WR KaQdOH WKLV NLQd RI VLWXaWLRQ. HHUH LV KRZ WR
UHZULWH WKLV VQLSSHW XVLQJ WKH SacNaJH:

String skipLastChar(String text) {

return text.characters.skipLast(1).toString();

}

NRWH WKaW WKH SacNaJH SURYLdHV aQ H[WHQVLRQ PHWKRd ZKLcK WXUQV a SWULQJ RbMHcW LQWR a CKaUacWHUV
RbMHcW.

QXHVWLRQ DLVSOa\ LRJLc
& RaWLRQaOH

Q11 BHIRUH SaUWLcLSaWLQJ LQ WKLV VXUYH\, Kad \RX UXQ LQWR, RU KHaUd abRXW, aQ\
LVVXHV ZKHQ XVLQJ DaUW¶V SWULQJ API WR PaQLSXOaWH WH[W LQSXW WKaW
LQcOXdHV H[WHQdHd JUaSKHPH cOXVWHUV VXcK aV HPRMLV (H.J.,)
aQd accHQWHd OHWWHUV (H.J., caIp)?

Ɣ I Kad UXQ LQWR VXcK LVVXHV bHIRUH.
Ɣ I Kad KHaUd RI VXcK LVVXHV bXW QHYHU UaQ LQWR WKHP.
Ɣ I KadQ¶W KHaUd RI VXcK LVVXHV bHIRUH.
Ɣ I¶P QRW VXUH.

RaWLRQaOH:
cKHcN LI WKH
UHVSRQdHQWV
NQHZ abRXW WKLV
LVVXH \HW VWLOO
JaYH WKH ZURQJ
aQVZHU.

AddLWLRQaO e[SOaQaWLRQ fRU WUeaWPeQW gURXS 1

String skipLastChar(String text) {

return text.substring(0, text.length - 1);

}

SR ZKaW ZaV WKH IXQdaPHQWaO SURbOHP LQ WKLV cRdH VQLSSHW? TKHUH aUH a cRXSOH RI WKLQJV JRLQJ RQ
KHUH:

Ɣ DaUW¶V VWaQdaUd SWULQJ cOaVV XVHV WKH UTF-16 HQcRdLQJ, ZKLcK PHaQV WKaW WKH VWULQJ LV VWRUHd
LQ a VHTXHQcH RI 16-bLWV cRdH XQLWV. TKH OHQJWK SURSHUW\ RI SWULQJ UHWXUQV WKH QXPbHU RI WKRVH
UTF-16 XQLWV.

Ɣ HRZHYHU, VRPH HPRMLV aQd QRQ-EQJOLVK cKaUacWHUV UHTXLUH PRUH WKaQ RQH UTF-16 cRdH XQLW
WR VWRUH. FRU H[aPSOH, LV VWRUHd LQ 4 UTF-16 cRdH XQLWV LQ a DaUW SWULQJ. SXcK cKaUacWHUV
aUH IRUPaOO\ caOOHd H[WHQdHd JUaSKHPH cOXVWHUV.

PPIG 2020 98 www.ppig.org

IW LV cOHaU WKaW ZKHQ XVLQJ DaUW SWULQJ¶V VXbVWULQJ PHWKRd WR UHPRYH WKH OaVW ³cKaUacWHU´ IURP 'HL ',
LW ZLOO UHPRYH WKH OaVW RI WKH IRXU cRdH XQLWV UHSUHVHQWLQJ WKH IOaJ, OHaYLQJ WKH UHVXOWLQJ VXbVWULQJ
cRUUXSWHd.

TKH CKaUacWHUV SacNaJH ZaV cUHaWHd WR addUHVV WKLV OLPLWaWLRQ RI WKH SWULQJ API. POHaVH WaNH a IHZ
PLQXWHV WR WaNH a ORRN aW WKH dRcXPHQWaWLRQ RI WKH cKaUacWHUV SacNaJH bHORZ:

[IQVHUW VcUHHQVKRW: KWWSV://SXb.dHY/dRcXPHQWaWLRQ/cKaUacWHUV/OaWHVW/cKaUacWHUV/CKaUacWHUV-cOaVV.KWPO]

TUaQVLWLRQaO Sage
NH[W, \RX ZLOO UHad a IHZ PRUH cRdLQJ VcHQaULRV aQd HYaOXaWH cRdH ZULWWHQ WR VaWLVI\ WKRVH VcHQaULRV.
II \RX caQQRW dHWHUPLQH ZKHWKHU WKH cRdH ZRXOd ZRUN RU QRW, SOHaVH UHVSRQd ³Pa\bH´ LQVWHad RI
WU\LQJ WR UXQ WKH cRdH RXWVLdH RI WKH VXUYH\.

SRPH VcHQaULRV ZLOO SURYLdH cRUUHcW aQVZHUV LPPHdLaWHO\ aIWHU \RX JLYH \RXU aVVHVVPHQW, ZKLOH
RWKHUV ZLOO VKRZ cRUUHcW aQVZHUV aW WKH HQd RI WKLV H[HUcLVH.

SceQaULR 2 (ePaLO YaOLdaWLRQ)

NRWH: WKH SXUSRVH RI WKLV WaVN LV WR cKHcN LI WKH SaUWLcLSaQWV LQ WKH WZR WUHaWPHQW JURXSV ZRXOd
RYHUUHacW WR ZKaW WKH\ MXVW OHaUQHd abRXW WKH SWULQJ API¶V OLPLWaWLRQV LQ SURcHVVLQJ JUaSKHPH
cOXVWHUV. TKH VQLSSHW LQ WKLV VcHQaULR LV acWXaOO\ cRUUHcW.

YRX¶UH aVNHd WR UHYLHZ cRdH ZULWWHQ WR LPSOHPHQW WKH IROORZLQJ UHTXLUHPHQWV:

Ɣ TKH cRdH LV a IXQcWLRQ WKaW cKHcNV LI WKH WH[W LQSXW cRQWaLQV a OLNHO\ HPaLO addUHVV.

Ɣ SLQcH HPaLO addUHVVHV Pa\ LQcOXdH QRQ-EQJOLVK cKaUacWHUV WKHVH da\V, WKH cKHcN QHHdV WR bH
LQcOXVLYH.

Ɣ AIWHU VRPH WHVWLQJ, WKH IROORZLQJ UHJXOaU H[SUHVVLRQ LV cRQVLdHUHd JRRd HQRXJK:
'[^@\.]+@[^@\.]+\.[a-]]*'

bool containEmail(String email) {

return email.contains(RegExp(r'[^@\.]Ï@[^@\.]Ï\.[a-z]*'));

}

QXHVWLRQ DLVSOa\ LRJLc

Q16 DRHV WKLV VQLSSHW cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH
VcHQaULR (aVVXPLQJ WKH V\QWa[RI WKH cRdH aQd WKH UHJXOaU H[SUHVVLRQ KaYH
bHHQ cKHcNHd)?

Ɣ YHV
Ɣ NR
Ɣ Ma\bH

Q18 WKaW dR \RX WKLQN cRXOd bH PLVVLQJ RU LQcRUUHcW LQ WKLV VQLSSHW, LI aQ\?
Ɣ TKH cRdH VKRXOd XVH WKH cKaUacWHUV SacNaJH LQVWHad.
Ɣ TKH SURbOHP LV XQUHOaWHd WR WKH cKaUacWHUV SacNaJH. POHaVH

dHVcULbH WKH SURbOHP bULHIO\: _________
Ɣ I dRQ¶W NQRZ.

AQVZHU WR WKH
SUHYLRXV Q LV
³NR´ RU
³Ma\bH´ AND
WKH SaUWLcLSaQW
LV QRW LQ WKH
cRQWURO JURXS

PPIG 2020 99 www.ppig.org

https://pub.dev/documentation/characters/latest/characters/Characters-class.html

NH[W SaJH

Q19 TKH cRUUHcW aQVZHU LV ³YHV´, WKLV VQLSSHW caQ VaWLVI\ WKH UHTXLUHPHQWV
dHVcULbHd LQ WKH VcHQaULR. IQ IacW, WKLV VcHQaULR UHTXLUHV WKH SWULQJ API.
FLUVW, UHJXOaU H[SUHVVLRQV caQ bH XVHd WR PaWcK WH[W ZLWK QRQ-EQJOLVK
cKaUacWHUV. SHcRQd, WKH cKaUacWHUV SacNaJH dRHVQ¶W VXSSRUW UHJXOaU
H[SUHVVLRQV.

SKRZ LI WKH
SaUWLcLSaQW LV
QRW LQ WKH
cRQWURO JURXS.

Scenario 3 (count characters)

NRWH: WKH SXUSRVH RI WKLV WaVN LV WR cKHcN LI WKH SaUWLcLSaQW ZRXOd UHaOL]H WKH\ QHHd WR XVH WKH
cKaUacWHUV SacNaJH WR cRUUHcWO\ PHaVXUH WKH QXPbHU RI cKaUacWHUV LQ a VWULQJ.

YRX¶UH aVNHd WR UHYLHZ cRdH ZULWWHQ WR LPSOHPHQW WKH IROORZLQJ UHTXLUHPHQWV:

Ɣ TKH cRdH LV a IXQcWLRQ WKaW cKHcNV LI WKH WH[W HQWHUHd b\ WKH XVHU KaV H[cHHdHd a VSHcLILc
QXPbHU RI cKaUacWHUV.

Ɣ TKH IXQcWLRQ UHWXUQV a SRVLWLYH QXPbHU RI UHPaLQLQJ cKaUacWHUV LI WKH OLPLW KaVQ¶W bHHQ
UHacKHd, RU a QHJaWLYH QXPbHU RI H[WUa cKaUacWHUV LI WKH OLPLW KaV bHHQ H[cHHdHd.

int checkMaxLength(String input, int limit) {

var length Ó input.length;

return limit - length;

}

QXHVWLRQ DLVSOa\ LRJLc

Q20 DRHV WKLV VQLSSHW cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH
VcHQaULR (aVVXPLQJ WKH V\QWa[RI WKH cRdH KaV bHHQ cKHcNHd)?

Ɣ YHV
Ɣ NR
Ɣ Ma\bH

Q22 WKaW dR \RX WKLQN cRXOd bH PLVVLQJ RU LQcRUUHcW LQ WKLV VQLSSHW, LI aQ\?
Ɣ TKH cRdH VKRXOd XVH WKH cKaUacWHUV SacNaJH LQVWHad.
Ɣ TKH SURbOHP LV XQUHOaWHd WR WKH cKaUacWHUV SacNaJH. POHaVH

dHVcULbH WKH SURbOHP bULHIO\: _________
Ɣ I dRQ¶W NQRZ.

AQVZHU WR WKH
SUHYLRXV Q LV
³NR´ RU
³Ma\bH´ AND
QRW LQ WKH cRQWURO
JURXS

SceQaULR 4 (VSOLW VWULQg)

NRWH: WKH VQLSSHW ZaV LQLWLaOO\ cRQVLdHUHd WR bH cRUUHcW LQ RUdHU WR WHVW RYHUUHacWLRQ, bXW ZH OaWHU
dLVcRYHUHd a cRQdLWLRQ ZKHUH WKLV VQLSSHW ZRXOd SURdXcH LQcRUUHcW UHVXOWV. TKHUHIRUH, daWa IURP WKLV
VcHQaULR ZaV H[cOXdHd IURP WKH aQaO\VLV.

PPIG 2020 100 www.ppig.org

YRX¶UH aVNHd WR UHYLHZ cRdH ZULWWHQ WR LPSOHPHQW WKH IROORZLQJ UHTXLUHPHQWV:

Ɣ TKH cRdH LV a IXQcWLRQ WKaW VSOLWV a VWULQJ aW µ ¶ aQd UHWXUQV a OLVW RI VXbVWULQJV. FRU H[aPSOH,
WXUQLQJ µVSacH LV IRU HYHU\bRd\¶ LQWR [µVSacH¶, µLV¶, µIRU¶, µHYHU\bRd\¶].

RHYLHZ WKH IROORZLQJ cRdH VQLSSHW aQd dHWHUPLQH LI LW caQ cRUUHcWO\ PHHW \RXU UHTXLUHPHQWV.

List splitStarSeparatedWords(String text) {

return text.split(' ');

}

QXHVWLRQ DLVSOa\ LRJLc

Q23 DRHV WKLV VQLSSHW cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH
VcHQaULR (aVVXPLQJ WKH V\QWa[RI WKH cRdH KaV bHHQ cKHcNHd)?

Ɣ YHV
Ɣ NR
Ɣ Ma\bH

Q25 WKaW dR \RX WKLQN cRXOd bH PLVVLQJ RU LQcRUUHcW LQ WKLV VQLSSHW, LI aQ\?
Ɣ TKH cRdH VKRXOd XVH WKH cKaUacWHUV SacNaJH LQVWHad.
Ɣ TKH SURbOHP LV XQUHOaWHd WR WKH cKaUacWHUV SacNaJH. POHaVH

dHVcULbH WKH SURbOHP bULHIO\: _________
Ɣ I dRQ¶W NQRZ.

AQVZHU WR WKH
SUHYLRXV Q LV
³NR´ RU
³Ma\bH´
AND QRW LQ
WKH cRQWURO
JURXS

NH[W SaJH

Q26 TKH cRUUHcW aQVZHU LV ³YHV´, WKLV VQLSSHW caQ VaWLVI\ WKH UHTXLUHPHQWV
dHVcULbHd LQ WKH VcHQaULR. TKH VQLSSHW ZRUNV bHcaXVH WKH SWULQJ API¶V VSOLW
PHWKRd caQ aSSURSULaWHO\ KaQdOH HPRMLV aV VHSaUaWRUV. MRUHRYHU, WKH
cKaUacWHUV SacNaJH dRHVQ¶W KaYH a VSOLW PHWKRd RU LWV HTXLYaOHQW.

SKRZ LI WKH
SaUWLcLSaQW LV
QRW LQ WKH
cRQWURO JURXS.

SceQaULR 5 (cUeaWe LQLWLaOV)

NRWH: WKH SXUSRVH RI WKLV WaVN LV WR WHVW LI WKH SaUWLcLSaQW ZRXOd UHaOL]H WKaW WKH LQdH[RSHUaWRU caQ
bUHaN JUaSKHPH cOXVWHUV.

YRX¶UH aVNHd WR UHYLHZ cRdH ZULWWHQ WR LPSOHPHQW WKH IROORZLQJ UHTXLUHPHQWV:

Ɣ TKH cRdH LV a IXQcWLRQ WKaW cUHaWHV LQLWLaOV IURP WKH ILUVW QaPH aQd WKH OaVW QaPH WKH XVHU
HQWHUV LQ WZR VHSaUaWH WH[W ILHOdV.

Ɣ FRU H[aPSOH, WKH IXQcWLRQ QHHdV WR JHQHUaWH LQLWLaOV VXcK aV ³JS´ IURP ³MRKQ´ aQd ³VPLWK´.

String createInitials(String firstName, String lastName) {

return firstName[0].toUpperCase() Ï lastName[0].toUpperCase();

}

PPIG 2020 101 www.ppig.org

QXHVWLRQ DLVSOa\ LRJLc

Q27 DRHV WKLV VQLSSHW cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH
VcHQaULR (aVVXPLQJ WKH V\QWa[RI WKH cRdH KaV bHHQ cKHcNHd)?

Ɣ YHV
Ɣ NR
Ɣ Ma\bH

Q29 WKaW dR \RX WKLQN cRXOd bH PLVVLQJ RU LQcRUUHcW LQ WKLV VQLSSHW, LI aQ\?
Ɣ TKH cRdH VKRXOd XVH WKH cKaUacWHUV SacNaJH LQVWHad.
Ɣ TKH SURbOHP LV XQUHOaWHd WR WKH cKaUacWHUV SacNaJH. POHaVH

dHVcULbH WKH SURbOHP bULHIO\: _________
Ɣ I dRQ¶W NQRZ.

AQVZHU WR WKH
SUHYLRXV Q LV
³NR´ RU ³Ma\bH´
AND QRW LQ WKH
cRQWURO JURXS

SceQaULR 6 (We[W RYeUfORZ eOOLSVLV)

NRWH: WKH SXUSRVH RI WKLV VcHQaULR LV WR cKHcN LI WKH SaUWLcLSaQW VWLOO UHPHPbHUV WKH VXbVWULQJ
VcHQaULR ZKHUH WKH\ ZHUH ILUVW H[SRVHd WR WKH JUaSKHPH PaQLSXOaWLRQ LVVXH.

YRXU aSS QHHdV WR dLVSOa\ a OLVW RI PHVVaJHV, RQH SHU OLQH. YRX¶UH aVNHd WR UHYLHZ cRdH ZULWWHQ WR
LPSOHPHQW WKH IROORZLQJ UHTXLUHPHQWV:

Ɣ TKH cRdH LV a IXQcWLRQ WKaW dLVSOa\V WH[W RYHUIORZ aV aQ HOOLSVLV ZKHQ WKH PHVVaJH¶V OHQJWK
H[cHHdV WKH JLYHQ cKaUacWHU OLPLW.

Ɣ FRU WKH SXUSRVH RI WKLV VXUYH\, \RX caQ LJQRUH WKH YaU\LQJ ZLdWKV RI cKaUacWHUV.

String textOverflowEllipsis(String text, int limit) {

if (text.length Õ limit) {

return text.substring(0, limit - ¾) Ï '...';

} else {

return text;

}

}

QXHVWLRQ DLVSOa\ LRJLc

Q30 DRHV WKLV VQLSSHW cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH
VcHQaULR (aVVXPLQJ WKH V\QWa[RI WKH cRdH KaV bHHQ cKHcNHd)?

Ɣ YHV
Ɣ NR
Ɣ Ma\bH

Q32 WKaW dR \RX WKLQN cRXOd bH PLVVLQJ RU LQcRUUHcW LQ WKLV VQLSSHW, LI aQ\?
Ɣ TKH cRdH VKRXOd XVH WKH cKaUacWHUV SacNaJH LQVWHad.
Ɣ TKH SURbOHP LV XQUHOaWHd WR WKH cKaUacWHUV SacNaJH. POHaVH

dHVcULbH WKH SURbOHP bULHIO\: _________
Ɣ I dRQ¶W NQRZ.

AQVZHU WR WKH
SUHYLRXV Q LV ³NR´
RU ³Ma\bH´ AND
QRW LQ WKH cRQWURO
JURXS

PPIG 2020 102 www.ppig.org

ReYLeZ cRUUecW aQVZeUV
POHaVH UHYLHZ WKH H[SHcWHd aQVZHUV WR WKH TXHVWLRQV LQ WKH SUHYLRXV cRdH VcHQaULRV. TKLV SaJH aOVR
VKRZV WKH cRUUHcW cRdH IRU cRdLQJ VcHQaULRV ZKHUH WKH VQLSSHWV SURYLdHd Kad LVVXHV.

SXPPaU\ Rf cRUUecW aQVZeUV
TKH WabOH bHORZ VKRZV WKH H[SHcWHd UHVSRQVHV WR WKH TXHVWLRQ "WLOO WKH cRdH abRYH cRUUHcWO\ VaWLVI\
WKH UHTXLUHPHQWV dHVcULbHd LQ WKH VcHQaULR?"

ScHQaULR # YRXU AQVZHU CRUUHcW AQVZHU

2 (HPaLO YaOLdaWLRQ) <IQVHUW WKH SaUWLcLSaQW¶V aQVZHU> YHV

3 (cRXQW cKaUacWHUV) <IQVHUW WKH SaUWLcLSaQW¶V aQVZHU> NR

4 (VSOLW VWULQJ) <IQVHUW WKH SaUWLcLSaQW¶V aQVZHU> YHV

5 (cUHaWH LQLWLaOV) <IQVHUW WKH SaUWLcLSaQW¶V aQVZHU> NR

6 (WH[W RYHUIORZ HOOLSVLV) <IQVHUW WKH SaUWLcLSaQW¶V aQVZHU> NR

SceQaULR 2 (ePaLO YaOLdaWLRQ)
WLOO WKH cRdH abRYH cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH VcHQaULR?

Ɣ CRUUHcW aQVZHU: YHV.

Ɣ TKLV VcHQaULR UHTXLUHV WKH SWULQJ API. FLUVW, UHJXOaU H[SUHVVLRQV caQ bH XVHd WR PaWcK WH[W
ZLWK JUaSKHPH cOXVWHUV. SHcRQd, WKH cKaUacWHUV SacNaJH dRHVQ¶W VXSSRUW UHJXOaU H[SUHVVLRQV.

SceQaULR 3 (cRXQW chaUacWeUV)
WLOO WKH cRdH abRYH cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH VcHQaULR?

Ɣ CRUUHcW aQVZHU: NR. TKH cRdH ZRQ¶W SaVV WKH WHVW bHORZ.

Ɣ THVW cRdH:

test("checkMaxLength(String input, int limit) returns how many characters left

in the space", (){

var input Ó "Laughter is the sensation of feeling good all over and showing

it principally in one place.";

var limit Ó 1¿0;

expect(checkMaxLength(input, limit), equals(¿Ä));

input Ó "Laughter is the sensation of feeling good all over and showing

it principally in one place.";

expect(checkMaxLength(input, limit), equals(¿Â));

});

Ɣ THVW UHVXOWV:

00:00 Ï1 -2: checkMaxLength(String input, int limit) returns how many

characters left in the space [E]

Expected: Ô¿ÂÕ

Actual: Ô¿ÁÕ

package:test_api expect

test.dart 22:À main.ÔfnÕ

Ɣ CRUUHcW cRdH:

PPIG 2020 103 www.ppig.org

int checkMaxLength(String input, int limit) {

var length Ó input.characters.length;

return limit - length;

}

SceQaULR 4 (VSOLW VWULQg)
WLOO WKH cRdH abRYH cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH VcHQaULR?

Ɣ CRUUHcW aQVZHU: YHV

Ɣ TKH VQLSSHW ZRUNV bHcaXVH WKH SWULQJ API¶V VSOLW PHWKRd caQ aSSURSULaWHO\ KaQdOH HPRMLV aV
VHSaUaWRUV. MRUHRYHU, WKH CKaUacWHUV cOaVV dRHVQ¶W KaYH a VSOLW PHWKRd RU LWV HTXLYaOHQW.

SceQaULR 5 (cUeaWe LQLWLaOV)
WLOO WKH cRdH abRYH cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH VcHQaULR?

Ɣ CRUUHcW aQVZHU: NR. TKH UHaVRQ LV WKaW WKH VXbVcULSW LQWHUIacH aV XVHd LQ QaPH[0] cRXOd JUab a
IUacWLRQ RI a cKaUacWHU. FRU H[aPSOH, WKH cRdH ZRQ¶W SaVV WKH WHVW bHORZ, bHcaXVH WKH cKaUacWHU
"e" caQ bH a cRPbLQaWLRQ RI aQ "E" aQd aQ acXWH "�".

Ɣ THVW cRdH:

test(

"createInitials(firstName, lastname) creates initials from a first name

and a last name",

() {

var firstName Ó "eғtienne";
var lastname Ó "bézout";

expect(td.createInitials(firstName, lastname), equals('EғB'));
});

Ɣ THVW UHVXOW:

00:01 Ï1 -À: createInitials(firstName, lastname) creates initials from a first

name and a last name [E]

Expected: 'EғB'
Actual: 'EB'

Which: is different.

Expected: EғB
Actual: EB

^

Differ at offset 1

Ɣ CRUUHcW cRdH:

String createInitials(String firstName, String lastName) {

var initials Ó firstName.characters.first.toUpperCase() Ï

lastName.characters.first.toUpperCase();

return initials;

}

SceQaULR 6 (We[W RYeUfORZ eOOLSVLV)
WLOO WKH cRdH abRYH cRUUHcWO\ VaWLVI\ WKH UHTXLUHPHQWV dHVcULbHd LQ WKH VcHQaULR?

Ɣ CRUUHcW aQVZHU: NR, WKH cRdH ZRQ¶W SaVV WKH WHVW bHORZ.

PPIG 2020 104 www.ppig.org

Ɣ THVW cRdH:

test(

"textOverflowEllipsis(String text, int limit) displays an ellipsis for

overflown text",

() {

var input Ó " rhinoceros";

var limit Ó Â;

expect(td.textOverflowEllipsis(input, limit), equals(" rhi..."));

});

Ɣ THVW UHVXOW:

00:01 Ï1 -¾: textOverflowEllipsis(String text, int limit) displays an ellipsis

for overflown text [E]

Expected: ' rhi...'

Actual: ' rh...'

Which: is different.

Expected: rhi...

Actual: rh...

^

Differ at offset ¿

Ɣ CRUUHcW cRdH:

String textOverflowEllipsis(String text, int limit) {

return text.characters.take(limit - ¾).toString() Ï '...';

}

AWWLWXdeV aQd SUefeUeQceV
(DLVSOa\ ORJLc: WUHaWPHQW JURXSV RQO\)

QXHVWLRQ DLVSOa\ LRJLc &
RaWLRQaOH

Q37 HRZ LPSRUWaQW LV LW WR KaQdOH HPRMLV cRUUHcWO\ LQ WH[W PaQLSXOaWLRQ
WaVNV ZKLOH dHYHORSLQJ aSSV?

Ɣ E[WUHPHO\ LPSRUWaQW
Ɣ VHU\ LPSRUWaQW
Ɣ MRdHUaWHO\ IPSRUWaQW
Ɣ SOLJKWO\ LPSRUWaQW
Ɣ NRW aW aOO LPSRUWaQW

RaWLRQaOH: TR PHaVXUH
SHUcHLYHd LPSRUWaQcH
RI WKH LVVXH.

Q38 WKLcK RI WKH IROORZLQJ VWaWHPHQWV bHVW dHVcULbHV KRZ \RX ZRXOd
aSSURacK WH[W PaQLSXOaWLRQ LQ DaUW LQ WKH IXWXUH?

Ɣ I ZRXOd VWLcN ZLWK WKH SWULQJ API XQOHVV I KaYH HYLdHQcH
WKaW VRPHWKLQJ LV bURNHQ IRU P\ aSS¶V XVHUV.

Ɣ I ZRXOd HYaOXaWH HYHU\ XVH caVH RI WKH SWULQJ API LQ P\
SURMHcW aQd dHcLdH ZKHQ WKH cKaUacWHU SacNaJH VKRXOd bH
XVHd LQVWHad.

RaWLRQaOH: TR PHaVXUH
SRWHQWLaO bHKaYLRU
cKaQJH

PPIG 2020 105 www.ppig.org

Ɣ I ZRXOd XVH WKH cKaUacWHUV SacNaJH WR PaQLSXOaWH WH[W
ZKHQHYHU LW caQ bH XVHd.

Ɣ I¶P QRW VXUH.
Ɣ OWKHU: ____________

Q39 HRZ HaV\ LV LW WR dHWHUPLQH ZKHQ \RX QHHd WR XVH WKH cKaUacWHUV
SacNaJH WR ZULWH cRUUHcW cRdH.

Ɣ VHU\ HaV\
Ɣ SRPHZKaW HaV\
Ɣ NHXWUaO
Ɣ SRPHZKaW KaUd
Ɣ VHU\ KaUd

RaWLRQaOH: TR PHaVXUH
cRQILdHQcH LQ PaNLQJ
LQWXLWLYH cKRLcHV.

Q40 IQ \RXU RZQ ZRUdV, KRZ ZRXOd \RX VXPPaUL]H VLWXaWLRQV ZKHUH WKH
cKaUacWHUV SacNaJH VKRXOd bH XVHd WR SURSHUO\ PaQLSXOaWH WH[W?

RaWLRQaOH: TR
PHaVXUH, KRZ ZHOO WKH
XVHU caQ cRPH XS ZLWK
UXOHV RI WKXPb WKH\
caQ UHPHPbHU. A
UXbULc QHHdV WR bH
cUHaWHd WR JUadH WKLV
aQVZHU.

Q41 II DaUW¶V SWULQJ API caQ SURYLdH dLIIHUHQW YLHZV LQWR WKH daWa VWRUHd
LQ a SWULQJ RbMHcW, ZKLcK dR \RX SUHIHU WR bH WKH dHIaXOW YLHZ:

Ɣ UTF-16. TKLV LV WKH cXUUHQW bHKaYLRU. RaQdRP accHVV b\
VWULQJ LQdH[(H.J., LQSXW[2]) LV HIILcLHQW, bXW LW cRXOd bUHaN
VRPH HPRMLV aQd accHQWHd OHWWHUV.

Ɣ GUaSKHPH COXVWHUV. AOO HPRMLV ZLOO bH KaQdOHd cRUUHcWO\
RXW RI WKH bR[. RaQdRP accHVV b\ VWULQJ LQdH[(H.J.,
LQSXW[2]) caQ bH VLPXOaWHd bXW LW ZLOO bH PRUH H[SHQVLYH.

Ɣ I¶P QRW VXUH.

RaWLRQaOH: TR PHaVXUH
XVHU SUHIHUHQcH RI
dHIaXOW VWULQJ YLHZ.

Q42 WK\ dR \RX SUHIHU WKH RSWLRQ \RX cKRVH LQ WKH SUHYLRXV TXHVWLRQ?

PaUWLcLSaQW bacNgURXQd

QXHVWLRQ DLVSOa\ LRJLc &
RaWLRQaOH

YRX¶UH aOPRVW dRQH. WH KaYH MXVW a cRXSOH PRUH TXHVWLRQV RQ WKLV
SaJH.

Q43 WKLcK W\SHV RI aSSV KaYH \RX dHYHORSHd XVLQJ DaUW/FOXWWHU?
(SHOHcW aOO WKaW aSSO\)

Ɣ BXVLQHVV aQd SURdXcWLYLW\ WRROV (H.J., caOHQdaU, WR-dR)
Ɣ CRPPXQLcaWLRQ aQd VRcLaO QHWZRUN
Ɣ EdXcaWLRQ
Ɣ EQWHUSULVH
Ɣ FLQaQcLQJ aQd baQNLQJ
Ɣ HHaOWK
Ɣ GaPHV

RaWLRQaOH: ASSV LQ
caWHJRULHV VXcK aV
³bXVLQHVV aQd
SURdXcWLYLW\ WRROV´ RU
³cRPPXQLcaWLRQ aQd
VRcLaO QHWZRUN´ aUH
PRUH OLNHO\ WR KaYH
XVHU LQSXW WKaW
LQcOXdHV EGC.

PPIG 2020 106 www.ppig.org

Ɣ LLIHVW\OH, IRRd, aQd dULQN (H.J. VKRSSLQJ, QHZV, WUaYHO,
ILWQHVV)

Ɣ MXVLc aQd VLdHR
Ɣ UWLOLWLHV (H.J., ZHaWKHU, caOcXOaWRU)
Ɣ SSRUWV
Ɣ OWKHU

Q44 IV EQJOLVK WKH SULPaU\ OaQJXaJH LQ \RXU cRXQWU\?
Ɣ YHV
Ɣ NR

RaWLRQaOH: DHYHORSHUV
LQ QRQ-EQJOLVK
VSHaNLQJ cRXQWULHV
PLJKW bH PRUH aZaUH
RI WKH EGC LVVXH.

Q45 BHIRUH SaUWLcLSaWLQJ LQ WKLV VXUYH\, Kad \RX UXQ LQWR, RU KHaUd abRXW,
aQ\ LVVXHV ZKHQ XVLQJ DaUW¶V SWULQJ API WR PaQLSXOaWH WH[W LQSXW
WKaW LQcOXdHV H[WHQdHd JUaSKHPH cOXVWHUV VXcK aV HPRMLV (H.J.,

) aQd accHQWHd OHWWHUV (H.J., caIp)?
Ɣ I Kad UXQ LQWR VXcK LVVXHV bHIRUH.
Ɣ I Kad KHaUd RI VXcK LVVXHV bXW QHYHU UaQ LQWR WKHP.
Ɣ I KadQ¶W KHaUd RI VXcK LVVXHV bHIRUH.
Ɣ I¶P QRW VXUH.

LRJLc: VKRZ LI
cRQdLWLRQ = cRQWURO.
RHVSRQdHQWV LQ
WUHaWPHQW cRQdLWLRQV
JHW WKLV TXHVWLRQ ULJKW
aIWHU VcHQaULR 1.

RaWLRQaOH: cKHcN LI WKH
UHVSRQdHQWV NQHZ
abRXW WKLV LVVXH \HW
VWLOO JaYH WKH ZURQJ
aQVZHU.

Q46 WKLcK RI WKH IROORZLQJ VWaWHPHQWV bHVW dHVcULbHV \RXU NQRZOHdJH
abRXW WKH cKaUacWHUV SacNaJH IRU DaUW bHIRUH SaUWLcLSaWLQJ LQ WKLV
VWXd\?

Ɣ I dLdQ¶W NQRZ WKLV SacNaJH H[LVWHd bHIRUH WKH VWXd\.
Ɣ I KHaUd abRXW LW bXW NQHZ OLWWOH abRXW ZKaW LW dRHV.
Ɣ I NQHZ WKH SacNaJH aQd WKH SURbOHP LW VROYHV, bXW I KaYHQ¶W

XVHd LW.
Ɣ I¶YH XVHd WKH cKaUacWHUV SacNaJH LQ P\ RZQ SURMHcWV.

Q47 WKaW LV \RXU OHYHO RI H[SHULHQcH ZLWK SURJUaPPLQJ LQ SZLIW?
Ɣ NR H[SHULHQcH
Ɣ AZaUHQHVV
Ɣ NRYLcH
Ɣ IQWHUPHdLaWH
Ɣ AdYaQcHd
Ɣ E[SHUW

Q48 HRZ RIWHQ dLd \RX KaYH WURXbOH XQdHUVWaQdLQJ VRPHWKLQJ LQ WKLV
VXUYH\ (H.J., TXHVWLRQV, LQVWUXcWLRQV, RU dHVcULSWLRQV)?

Ɣ AOZa\V
Ɣ OIWHQ
Ɣ SRPHWLPHV
Ɣ RaUHO\
Ɣ NHYHU

Q49 WKaW ZaV XQcOHaU LQ WKLV VXUYH\?

LRJLc: VKRZ LI WKH
aQVZHU WR Q48 LV QRW
³RaUHO\´ RU ³NHYHU´.

PPIG 2020 107 www.ppig.org

Integrating a Live Programming Role into Games

Krish Jain
Lake Washington
School District

Redmond, Washington 98052
USA

s-kjain@lwsd.org

Steven L. Tanimoto
Computer Sci. & Engineering

University of Washington
Seattle, Washington 98195

USA
tanimoto@uw.edu

Abstract
Web-based games can permit players to take on multiple roles, and in the past such roles have generally
been defined in terms of characters in game narratives. In this report on early work, we propose adding
a live-programming role to games that may involve the kind of problem solving that requires “thinking
outside of the box.” The live programmer can be empowered by the game designers to bend the rules,
within certain bounds. We demonstrate the concept using a prototype multi-role game in which players
must bring Covid-19 outbreaks under control by performing a sequence of pre-designed actions. The
live programmer is able to adjust parameters of the actions, and even disable actions or create new ones.
We suggest that having the live programming role in such a game can foster learning about the game
domain and structure in different way than usual game playing or modification. Such a live programming
role may also be appropriate in some simulation environments and emergency management systems.
Finally, we discuss several issues raised by the existence of the live programming role: player power
and fairness, “live scripting” (one form of live programming), and characterizations of game sessions in
terms of evolution of game state versus evolution of game state plus code versions (“full trajectories”).

1. Introduction
Live programming may occur in a variety of contexts. One is musical performance, in which there is
typically one programmer writing code in front of an audience, and the code is controlling a music syn-
thesizer, responding to changes in the code during the performance (Aaron & Blackwell, 2013). In an-
other context, a programmer working on creating a dynamic web page writes HTML, SVG, or Javscript
code in one pane of browser window, and in another pane, a graphic is shown that has been produced by
the code. The objective is fast development of the graphics, so that the SVG can be incorporated into a
new web page, especially a web application (JSFiddle-Staff, 2020).

Another kind of context for live programming is what we refer to in this paper as “live scripting.” Here,
we have a programmer who is editing code that affects the running of an activity. For example, that
activity might be an architectural CAD session, in which an architect is drawing a CAD model or a
blueprint for a building. The programmer, who may be a different person from the architect, is editing
a script that controls how an alignment tool works. For example, the tool might be reprogrammed to
cause drawing elements to snap to various horizontal positions on the basis of a hierarchy of attraction
preferences involving nearby objects and the current distances to them. The live programmer (live
scriptor) here is playing a secondary, behind-the-scenes, role that is supporting the architect.

The meaning of the word “live” in such live scripting can be understood to be “concurrent with the
activity being modified.” Here “activity” is not necessarily to be interpreted as the computer executing
the edited code, as it typically is in live programming situations. The activity is more general and
involves, in our architectural example, a session in which a human user (or several users) are interacting
with a computational system to accomplish a task, such as designing a building. The live scripting is
taking place while the designing is happening. If the scripting were not live in this sense, then it would
have to be done in specific time intervals during which other activities such as drawing the blueprint
were suspended or allowed to continue but determined to be independent of the scripting. We further
discuss the notion of live scripting in section 4.9.

Live scripting has several potential benefits. One is the usual live programming benefit of reduced

PPIG 2020 108 www.ppig.org

latency between programmer action (e.g., editing) and programmer understanding of the consequences
of that action. Another is allowing tooling limitations to be fixed without requiring the users of the tools
to start their designs or other projects over again. Related to this is the possibility of real-time interaction
between the programmer and the user, in the context of the session, so they can cooperate to achieve the
joint goal of a successful design and improved tool.

This live-scripting form of live programming could play an important part in education and training,
especially when the programmer needs to learn how a certain type of system works and can be modified.
One of us has made the case that future systems for emergency management could benefit from facilities
for live programming (Tanimoto, 2020). An important component of an emergency management system
is a subsystem for conducting training exercises. A live-programming component could be used both
to help create new training exercises and as the target of training exercise – i.e., for bringing a new live
programmer on-board as an emergency response team member.

With that kind of scenario in mind, we developed a simple collaborative game that very roughly re-
sembles an emergency management system which offers multiple user roles. Within that scenario is
a special, unconventional role: a “live programmer.” (Now that we have made a distinction between
live programming in general, and live scripting, we will revert to the more common terminology of live
programmer for the game role to be described; it is really live scripting in the above sense.)

The live programmer is empowered to edit program code that affects the running of the game itself. The
overall system, which includes the facility for live programming, it set up such that more traditional
game play and live programming not only can happen concurrently, but such that the changes made by
the live programmer can take effect immediately, sometimes altering the course of the game, and without
requiring players to restart the game.

2. Related Work
The design of programming environments has a major impact on the experience of computer program-
mers (Edwards, Kell, Petricek, & Church, 2019). In addition, the applications context and social con-
text also have an impact on the programmer experience, especially with novice programmers (Guzdial,
2015).

In addition, by supporting “live” programming, a development environment can enable an interactive
programming experience that is “tighter” and that can enhance either the process or the end result of a
programming session (Victor, 2012) (McDirmid, 2013) (Church, 2017).

Liveness can be incorporated in a variety of styles within an environment, from full programming to
merely parameter tuning (Kato & Goto, 2016). For more literature related to liveness, see the references
in some recent works (Petricek, 2019) (Kato, 2017).

Programming is important nowadays not only for creating software products, but to control or modify the
behavior of systems that already come with a lot of software. In a domain such emergency management,
it can happen that new information-processing needs arise, or preconceived models need to be modified,
and computer code may be the best vehicle for achieving the change.

Past work on emergency management systems (EMS) includes work from the decision-control systems
standpoint (e.g., (Turoff, 2002)), and the commercial enterprise developers of EMSs such as WebEOC
(Juvare-Inc., 2020) and intergovernmental agencies (World-Health-Organization, 2013).

3. The Game Context for Live Programming
Next we describe the specific game we developed that serves as a computer-based activity context for the
live programming. The game is collaborative, providing explicitly named roles for multiple players, and
allowing each player to join a session over the Internet. The basic game is turn-based. However, there
is a special role of live programmer (LP) which is not strictly turn-based but more loosely synchronized
with the activities of the other roles.

PPIG 2020 109 www.ppig.org

3.1. A COVID-19 Pandemic Management Scenario
We designed and implemented a game in which a collaborating team of players work to get an imaginary
(and extremely simplified) version of the COVID-19 pandemic under control. The game is implemented
within an online client-server software framework called SOLUZION, which is described in more detail
in section 4.3. Figure 1 shows a screen shot from the beginning of a session. For some of the details
about the game, please refer to Video 1 of the two associated with this paper. (URLs to the videos are
given in the appendix.)

Figure 1 – Screen shot at the start of a game of pandemic management.

3.2. The Live Programming Role
We invented a special role for the game in order to begin to explore the possible ways in which live
programming could be meaningfully integrated into games.

The progression of the game itself is controlled by a Python program (the formulation file) that operates
within an enclosing client-server framework implemented in Javascript and Python. The formulation
file specifies an initial state for the game and a set of game operators that can be applied by players to
change the current state of the game.

The live programmer (LP) in the game is empowered to edit the formulation file such that the functions
contained within operators change, and/or new operators are created. The effects of these changes occur
at the very next turn in the game after the LP clicks on “Save.”

The framework requires the LP to have a basic knowledge of Python programming, as well as of the
relationship between operators and states. As to not overwhelm a novice programmer, the framework
presents two options: a novice version and a complete version. The first comes with suggested events for
the LP to follow so that the LP becomes familiar with the code. After developing a thorough understand-
ing of the framework, the LP can choose to use the complete version to edit all the code in the program.
In the context of this simulation, the LP can present novel ideas into the mix to better predict outbreaks.
For instance, the LP could split an existing city into two to further illustrate the idea of quarantine or

PPIG 2020 110 www.ppig.org

create a new operator for the other roles to act upon. After introducing a new parameter to cities, the
change might not be immediately visible, but over multiple turns, it will be observed that the growth of
the virus will slow due to increased borders.

For more details about how the LP role works in the game, as well as its technical implementation,
please see Video 2 of the two videos associated with this paper. (Again, URLs to the videos are given in
the appendix.)

The game has been play-tested on a very limited basis at the time of this writing. However, the trial
game showed that the LP could respond to needs arising in the game at scripted intervals, to improve
the rudimentary COVID-19 propagation model to more accurately predict outbreaks and help the team
score better in the game.

If this game represented an actual emergency management system, and there were a LP who could make
functional changes to the system in response to new need during a developing crisis, the system and its
team of operators might be better able to manage the crisis.

Figure 2 – Illustration of a live programmer’s screen.

4. Future Work and Discussion
4.1. Future Work
We are considering several possible follow-on developments in this project: enhancements to the game
to make it somewhat more realistic, studying the LP role in relation to other roles, and making live
programming an essential part of playing and winning the game. In this next section we consider issues
primarily related to the second of these (understanding and reshaping the LP role in relation to the other
roles).

4.2. Discussion Overview
This section brings up a variety of issues germane to having a live programming (LP) role in a game.
The first issue is the relationship between the LP role and the other game roles. This leads to a discussion

PPIG 2020 111 www.ppig.org

of how much power the LP has, and how it might be limited or expanded for various purposes. Playing
the LP role typically requires more knowledge than playing other roles, and we next discuss what that
knowledge is and how the requirements can be reduced. These same issues are affected by the purpose
of the game in relation to application domains, which are then discussed. Then we return to the issue of
live scripting vs. live programming generally, which was laid out at the beginning of the paper. Finally,
we consider the issue of “divergence” which can be problematical in some live programming contexts;
it turns out not to be a concern for us when our purpose is supporting LP for the sake of enriching game
play, but it remains potentially problematical if the purpose of LP during the game is to improve the
formulation of the game.

4.3. Computational Model
In order to discuss some of the more interesting issues associated with this work, we first present some
background on the SOLUZION framework as well as a general model for a SOLUZION game that
includes live programming, such as our game presented in this paper. One example of the model’s use
is that it will help us explain the possible application of this sort of game to emergency management
training.

The SOLUZION framework permits a game designer to specify (using the Python language) an initial
game state and a set of operators, as well as a set of player roles. For example, we have a SOLUZION
formulation for a 4-disk version of the Towers of Hanoi puzzle, with a single player role, “Solver.” The
initial state contains a representation of a platform with three pegs, and 4 disks of different diameters,
with holes in their centers, piled up on the leftmost (first) peg. There are six operators, with names such
as “Move the topmost disk on Peg 1 to Peg 2.” A player takes a turn by selecting an operator that is
applicable in the current state. The computer then applies the operator, which updates the state and the
players’ displays (over the web, in their browsers). If the game has multiple roles, then turn taking is
typically managed through the current state having a variable whose value specifies whose turn it is. A
game session begins with the players adopting roles. SOLUZION does not prevent a user from taking
more than one role, but normally each player will take one role in a session. When the session owner
(the user who first connects to the game server after it has been started) starts the game, the SOLUZION
system running on the server puts the game into its initial state. That specifies which player(s) may
move first, based on the Python code in the game formulation file. Players take turns making moves
until the game ends, typically when a “goal” state is reached. In the Towers of Hanoi, the goal state is
the configuration of disks in which they are all piled up on the rightmost peg.

Thus a typical SOLUZION game session can be characterized as a sequence of moves: 〈µ1,µ2, . . . ,µn〉,
which induces a corresponding sequence of game states 〈σ0,σ1,σ2, . . . ,σn〉. Here σ0 represents the
initial state, and σi for i > 0 represents the game state that results at the completion of move µi. Every
game state σ j is the result of zero or more applications of game operators. (Each operator application is
one move.)

The incorporation of a live programming role makes the basic SOLUZION model insufficient to char-
acterize a game session. This is because after the game starts, the set of operators may change at any
time, due to the live programmer’s editing. Existing operators may have their names changed, their
preconditions changed, or their state-transformation functions changed. They may also be deleted. New
operators may be added. In order to describe the evolution of the set of operators, we’ll use a sequence
of code versions: 〈Ξ0,Ξ1, . . . ,Ξm〉.

The symbol Ξ0 refers to the problem formulation file at the beginning of the game, before a live pro-
grammer has made any changes. Each time the live programmer edits and saves the formulation file, the
set of available operators changes from, say, the one specified by Ξi to the one specified by Ξi+1. The
relative timing of LP code-saving steps and player moves is important. The full trajectory of a game
session consists of a sequence in which game moves and LP save operations are interleaved (though
not necessarily in a one-to-one fashion). Such a sequence can be represented as 〈ζ0,ζ1, . . . ,ζω〉, and
each ζi is either one of the µ j or one of the Ξk. These sequences are ordered by time, and the full tra-

PPIG 2020 112 www.ppig.org

jectory should have associated with it a sequence of time stamps, 〈t0, t1, . . . , tω〉, such that in the game
session event ζi happened at time ti. The full trajectory, together with its sequence of time stamps, gives
an accurate representation of what the players did during a game, insofar as the evolving game state
and formulation changes are concerned. Such a record makes it possible to recompute the sequence of
game states 〈σ0,σ1,σ2, . . . ,σn〉, in spite of the live programmer having made changes to the operator
definitions throughout the game.

When we discuss the possible application of these games to training emergency management personnel,
the full trajectory is a fundamental object that might be evaluated to provide educational assessment
relative to the desired training.

4.4. Live Programmer Role Relationships
We designed our game to have a live programmer (LP) role with the assumption that this LP role would
be one more role for a team of collaborators. Although we tell players they are working together in a
team, the software does not prevent them from either fighting over resources or getting in each others’
ways; e.g., the live programmer changing something that another player has been counting on, such as
the way funds are distributed when they arrive from governments. We have been assuming that a team
wants to win and will try to avoid these conflicts.

Our assumption is not necessarily warranted — that the LP will make positive contributions toward
the team’s achieving the game goal of bringing the pandemic under control. The LP may have the
ability, within the game’s software, to help, but that does not mean the LP will know how to help or
even actually wish to help. The LP could intentionally work against the efforts of the rest of the team,
whether instructed to help or not. Also, the LP could break the smooth operation of the game by causing
a semantic error, say, that sets the game into an extreme state. (Merely syntactic programming errors
will block the activation of new code versions that contain them and are fairly harmless.)

This leads to the concern, whether the LP is well-intentioned, or sufficiently skilled, or not, of whether
the other players trust the LP. If they are aware that the power of the LP is limited, this concern can be
ameliorated. If they trust the intentions of the LP, and they can be confident in the skill of the LP, the
concern can also be ameliorated. To reduce the worry on the part of other players, game designers can
do three kinds of things, and we are considering doing these to our game: (a) putting more explicit limits
on what the LP can do; (b) providing better training to the team, including helping teach the LP to be
competent, and training the other players about how to communicate with and make requests to the LP;
and (c) share the LP’s power among players by rotating the LP role within a game. We consider each of
these directions in more detail in subsections 4.5-4.7 below.

Before that, we discuss the particular role of “observer,” for which we haven’t provided any operators
for making moves in the game. Our “Observer” role was originally created to support audience members
who might wish to see the code being edited by the LP, as has been popular in live coding performances
with music (Sorensen, 2005). As implemented now, the observer role can serve that purpose, so online
sessions with the game can have audiences. However, the observer role can also serve as a supplemental
affordance for any player other than the LP. Thus the Medic is allowed to not only be the Medic but
also be an observer of the LP, and see the code that the LP is editing. Finally, we have neither intended
it nor tried it, but the observer role could support pair programming in which the observer acts as a
code navigator (communicating with the LP via Zoom, Skype, etc., or in person), while the LP does the
editing.

4.5. Limits on The Live Programming
In our current implementation of the game, the LP is free to edit any part of the problem-formulation
file, which specified the initial state of the game, and the operators that are available to the players to
make moves. Let us now consider placing easily understandable limits on what the LP can do.

The game operators could be partitioned into two groups: mutable and immutable operators, such that
the LP can only edit the mutable ones; which operators are which could be made known to all players.

PPIG 2020 113 www.ppig.org

Thus players who have learned what the immutable operators do can be assured that they will not change
and they will probably not lead to surprises.

Alternatively, the game’s state variables could similarly be partitioned such that the LP’s new code
cannot alter the existing behaviors with regard to the protected variables. This would be more difficult
to enforce while still keeping the existing LP programming mechanism intact, because an operator is
generally allowed by the SOLUZION framework to update the state in an arbitrary way. However, if
there were a “budget” variable in the game, players might be reassured to know that it could not be
tampered with by the LP; or perhaps they would be disappointed to know that.

Even more restrictive would be a constraint that the LP only create new code for a specific mathematical
equation that is part of the embedded simulation model. This function could be prevented from having
side effects or from accessing any but pre-selected state variables. In this way, the players could rest
assured that game logic would not change as a result of LP errors, creativity, or mischief, and yet the LP
could have a well-defined means of contributing to the game.

A different form of restriction would be to limit the LP’s changes to the turn-taking logic of the game.
It might seem like a good idea to a team to let the medic perform a succession of vaccination operations
before the researcher or quarantine specialist get to proceed with a new move, and this could be enabled
on a one-time basis by the LP, or whenever some particular condition is true in the current state, such as
a vaccine being available and millions still need it.

This last example illustrates one sense of the phrase “bending the rules.” The initial turn-taking order gets
modified in response to the needs of simulation, in a manner not expected in games. Another example
of a LP bending the rules is modifying a requirement that the Medic and Researcher never overspend
their budgets, such that players can go into the red financially, at least temporarily, to a certain extent.
Postponing a deadline or allowing one to be missed is another example of this sort of update that seems
inconsistent with the original game formulation but adds a degree of realism. Allowing larger groups of
people to be vaccinated in one turn, or cured of the disease, is another example of bending the rules –
altering the dynamics of the game in a manner unexpected at the start of the game.

An interesting possible variation of the limitation on LPs according to which game operators they might
edit is the following (which we have not implemented but are considering). In our game, each operator
is associated with one of the non-LP roles: Medic, Researcher, Quarantine specialist (M, R, Q). By
structuring game turns to follow an interleaved order (LP, M, LP, R, LP, Q, ...) and restricting the LP
edits to only operators of the role next up, players would have an understanding that the LP is regularly
providing coding services for each of them. Furthermore, each non-LP could specify through a menu,
which operator they would permit the LP to edit. This might not prevent mischief, but could give clearer
expectations about the role relationships than with the LP having complete freedom.

One more way to limit what the LP can do is to limit edits on operators to only the pre-condition portion
of operators. This is a predicate that defines the scope of applicability of the operator. For example,
undertaking a Covid-related research study may only be allowable in the game when 2 million dollars
are available in the current game state. However changing that precondition to allow the study when
only 1 million dollars are available widens the scope of applicability without altering the portion of the
operator that changes the current state.

Before we leave the subject of protecting a team from the potential ravages of a rogue LP, we note that
having an uncooperative or ill-intentioned group member is a problem for cooperative teams of all kinds,
and not to be blamed on the existence of an LP role. However, the difference in power between a normal
game role and the LP role justifies some special emphasis on the issue.

4.6. What Players Need to Know
Incorporating a live programming role into a game imposes some additional demands on the person
filling that role, and can also raise expectations on other players. Let’s consider what the LP role may
require and then discuss effects on other players.

PPIG 2020 114 www.ppig.org

In our game, the live programmer needs three kinds of knowledge: (a) programming in Python, (b) the
structure of a SOLUZION problem formulation, including some elements of the “classical theory of
problem solving,” and (c) the specific effects of the game’s operators. If we add limitations on what the
LP is permitted to change or add, then the LP needs to be aware of these limitations, as well.

The Python source code in the game’s initial problem formulation is simple enough that advanced knowl-
edge of Python is not required by the LP, in order to read and understand it. In addition, modifying this
code is not expected to require advanced Python knowledge either. For example, new class definitions
are not required, although modifications to the given State class, could be useful; adding a new state
variable, through an assignment statement such as new_state.num_virus_variants = 3 is
allowed in Python, even if the State class’ __init__ did not set up any num_virus_variants
member variable. If an LP wishes to use advanced Python features, however, there is nothing that we
have put in the game to stop that.

The LP needs to understand that our game is implemented within a software framework (SOLUZION)
that requires all potential player actions to be implemented as “operators” that may transform a data
object, known as the “state” to effect moves or progress in the game. Each operator has three compo-
nents: a textual name used in the game’s human interface, a “precondition” function that determines
whether the operator is allowed in the current state, and a “state-transformation function” that maps the
current state to a new game state when the operator is used. Learning this structure is relatively easy,
say, in comparison with learning to program. A new LP should either be given a 15-minute personal
introduction to SOLUZION and the existing problem formulation code or watch a short video.

The third kind of knowledge needed by the LP is an understanding of what the existing formulation’s
operators do, and how they do it. This can be learned through a combination of the tutorial (which should
combine an introduction to SOLUZION with information about how the existing operators work), game
play – to see the operators put into action by the players, and examining the source code of the problem
formulation. Comments within this source code assist the LP in this regard.

While the knowledge requirements for the LP role may seem formidable, one can argue that they are not
so bad. Programming ability and fluency is more and more common, as computational literacy is taken
seriously by K-12 educators. The SOLUZION structure is intentionally simple, almost minimal in its
requirements, and the given problem formulation file is already in the proper form, so an LP never has
to come up with a formulation file from scratch. The existing game is quite simple, and does not involve
complicated code in its operators. That said, in the future, we could further simplify what the LP needs
to know through one or more of the limitations mentioned earlier, such as limiting the changeable code
to one particular mathematical function used in modelling the pandemic’s spread.

What the non-LP players need to know is a little about their own roles (e.g., Medic, Researcher, Quaran-
tine Specialist) in controlling a pandemic, how the basic game mechanics work (turn taking) and enough
about the LP role to either trust the LP (if possible) or have a justified mistrust.

Game events must be understandable to all players. Certain events take place after a pre-specified
number of turns have been taken – this could be a new outbreak of the disease, the discovery of a
new variant, or a breakthrough in vaccine development. Players should also be able to read game state
variables as shown on the screen and know generally what they represent.

Prompts to the LP need to be understandable, and understandable in terms of the problem formulation
elements – current state, game operators including their preconditions and state-transformation func-
tions. A LP might benefit from having a “cheat sheet” about how to get started in responding to such
prompts.

4.7. Power Sharing
An alternative to greatly restricting the free-ranging power of the one LP in the game is to somehow
distribute that power more evenly among players. Here are some ways we might go about re-designing
the game for that.

PPIG 2020 115 www.ppig.org

Rotation of the role of Live Programmer could be incorporated and enforced, so each player who wishes
to do so could have the chance to perform live programming as part of his/her regular turn. Such a
policy might comport well with the earlier-mentioned constraint that such live programming be limited
to editing only the operators associated with the role whose turn it is. This suggests all players would
have to be able to program in Python to take full advantage of this policy.

This rotation approach is not very much different from saying that all roles in the game should be
considered LP roles. Then the operators become simply a means of ordering edits into turns. A player
would take a turn by making some edits as a LP and then applying an operator to signal the end of
the turn. Whether players would be allowed to perform editing outside their turns is a design decision
that might depend on how quickly players are expected to make changes, and how their edits might be
restricted to operators they “own.” If their editing time intervals and program scopes are allowed to
overlap, then conflict-resolution methods might be needed.

A game with this many LPs might require more elaborate scaffolding to keep them all on track. Once
again, each could be limited to specific functions, operators, or formulas.

Finally, we could achieve an approximation of this sort of power sharing without making any change to
the current game implementation as follows. We would ask each non-LP player to take on both a regular
role (Medic, Researcher, Quarantine specialist) and an observer role. These is no limit on how many
observers there can be. We then instruct each player to be part of the “programming committee” by
using techniques of pair programming, triple programming, etc., to assist the LP in making the changes
needed by the whole team. We might call this manner of playing the “co-programming” game strategy.
Co-programming this way avoids certain editing/versioning conflicts that could arise if all players were
LPs simultaneously editing the problem formulation file. That is another possibility, however.

4.8. Contrasting Application Domains
We imagine three types of applications for the techniques used in our game to combine the LP role with
the rest of the application: (a) training of live programmers to modify existing code in the context of a
running activity, (b) game design, during which the modifications introduced by the LP get immediately
tested in subsequent turns of the play-testing session, and (c) entertainment.

Training a live programmer involves not only helping that person master the three kinds of knowledge
listed in Section 4.5, but giving the LP experience in communicating with a team in the context of
solving a problem. Emergency management is one such context (Tanimoto, 2013). Such communication
requires that the LP not only understand much of the existing code, but be able to discuss its structure
and functionality with team members who might have next to no programming knowledge. This could
mean that the LP learns to help the non-LPs develop mental models for the code functionality and for
the challenges of the coding process.

Game design differs in a fundamental respect from training live programmers. The actual sequence of
state changes during game design is of much less interest to the team than obtaining the final version
of the problem formulation file. The game-play session, with the live programming role, is a means
to an end in which the final game formulation Ξm will represent a game that no longer needs a live
programmer, since the tweaking of game rules will have been completed.

A third aim for prospective designers of our type of game is simply to create entertaining challenges for
players. Entertainment aspects include game storyline, problem/puzzle solving, and the social aspects
of collaboration, or possibly competition.

Our main interest is the first category of applications. Live programming may turn out to be important
in domains such as emergency management, or large control-system software maintenance (e.g., trans-
portation systems, nuclear power plants, space stations, etc.) An example from emergency management
where a live programmer may be required is patching a system for earthquake response management
to accept a new format of map data (say, produced by a new model of drones), so that the data can
be integrated with the existing maps to show locations of drones or beacons. The software must keep

PPIG 2020 116 www.ppig.org

running to keep supporting current rescue missions, but the new functionality needs to be added.

The game context can be helpful for training live programmers, as the environment may feel safer or
more welcoming, or just simpler as a first step. A veteran of the LP role in our game may have gained
enough confidence to consider working up to a LP role in, say, managing an earthquake response or
other emergency.

To create an effective training tool for emergency management (EM) through a reworking of our game,
not only should an initial problem formulation provide a good starting point for an EM exercise, but
the full game trajectory described in section 4.3 should be automatically captured and analyzed, so that
pedagogical feedback can be given to the players about their responses to particular game situations.
This should include an analysis of the code changes made by the LP to determine which were effective,
which were ineffective, and why or why not. Such a game and analysis system could be augmented with
in-game questionnaires to further interrogate players on their beliefs and the reasons for their in-game
choices, leading to even more accurate assessments.

A complex phenomenon, such as the evolution of a Covid-19 pandemic, would be modeled much more
accurately in a computer simulation based on high-fidelity data sets and mathematical formulas, than
in a simple turn-based game. One can imagine that a complex, scientific computational model for the
pandemic could be set up to have a live programmer making adjustments to it while running. That might
make sense if the simulation requires long run-times during which some of the assumptions on which it
is based turn out to change. In that scenario, the LP would need deep knowledge of the computational
model, but would perhaps not have to know about any game roles or much about other users of the
system. That scenario is also a possible application of our integrated LP role, but unless the running
simulation is also driving policy decisions with real-life consequences, this kind of system doesn’t seem
subject to the same risks as emergency management systems face, and so the safety and security issues
are less in focus.

The distinction between game and simulation, already tricky, is further eroded in a game with a LP role.
After all, isn’t a game just a simulation with rules about what players can do? If the rules can change
or disappear, what’s left might just look like a simulation. Of course, our LP role can also change the
simulation, or make it disappear, too. But by incorporating an LP role, we admit to “fuzzing the rules of
the game,” and thus we blur the line between game and simulation.

Yet one more possible application of our style of game is to support general learning and meta-cognition.
The players’ task could be thought of as having to quickly learn a set of rules and then track the rules as
they change. This could prompt students to reflect on how game structures guide their own thinking as
they live their lives, and how they might reshape those guides as their lives unfold.

4.9. Characterizing Live Scripting
The distinction we made at the outset is that live scripting is a special type of live programming in which
an ongoing activity which involves computation has human users whose experiences are being affected
by the programming as it happens. We further discuss this distinction here.

The category of programming commonly called “scripting” typically refers to developing relatively
small programs that work with larger, existing software items either to (1) “glue” them together, as a
Unix shell script might invoke a data-processing program and then pipe its output to a graphing program,
or (2) customize a large software application, such as Microsoft Word, adding new functionality through
Visual Basic programs. Customizing applications such as Gnu Emacs is accomplished by writing scripts
in Emacs Lisp. However, it requires a much greater level of technical proficiency to script Emacs
effectively than to simply use it as a text editor. Efforts have been directed to providing scaffolding for
would-be scriptors, e.g., in the form of customizable buttons in a Xerox Lisp environment (MacLean,
Carter, Lövstrand, & Moran, 1990). That group stresses the need for a culture of software tailoring in
addition to any special features in the environment.

In our game, the scripting can also benefit from a culture of tailoring, so that the live programmer can

PPIG 2020 117 www.ppig.org

feel fully supported by the rest of the team in making changes to the game’s formulation details. This
culture is relevant regardless of whether game players are simply trying to win, to improve the game, or
to learn about live programming or game structures.

In the context of collaborative design of software systems, including games, the argument for users and
designers working together has been made by Bødker and Gronbaek (Bødker & Grønbæk, 1991). That
teamwork situation is analogous to game players and live programmers working together to improve
the effectiveness of game operators. Our use of the term live scripting is somewhat apt for the sorts of
co-design in which users and programmers are testing and coding with a process of many very short
cycles of editing and testing. However, we would argue that scripting is really live when the cycles form
a continuous flow, and it is not necessary to explicitly restart tests whenever an update to the code is
made.

An additional example of live scripting is a collaboration between an advertising layout specialist and
a CSS specialist. They have a shared screen in front of them. The JSFiddle website (JSFiddle-Staff,
2020) is up. The CSS specialist is editing the CSS code as the ad specialist provides feedback about
the look. In this case, the result will be CSS code that then goes into regular use on a corporate sales
page. A variation of this involves a color-blind reader instead of the ad specialist, but again with the CSS
specialist. The result of this session is a customized styling of a the material, optimized for the individual
or for a relatively narrow set of viewers. In either case, the scripting is part of a close collaboration
between concurrent participants one of who edits code.

Live scripting for design can be considered a subclass of co-design processes in which we have a specific
LP role, and at least one other role whose job it is to test and/or use the computational affordances being
changed by the LP, and in which liveness plays an important role. The liveness eliminates or reduces
the need for the non-LP participant to repeat completed steps, due to having to restart the software. This
definition may not always lead to a clear distinction between live scripting and other co-participation
processes, but it seems to capture the nature of the relationships among the roles in our game, while also
being applicable to other systems.

4.10. Divergence of Trajectories – Game play vs Program Execution
One of the sticky technical issues around live programming in a software development context is the
“divergence” that can arise between the execution state (which typically can depend on past versions of
the source code) and the current version of the source code (Basman, Church, Klokmose, & Clark, 2016).
If users wish to be able to re-create an arbitrary execution state from a session, it may be infeasible,
because the program’s source code has been altered by live coding, and older versions have not been
kept. Another aspect of divergence is that the continuing execution of a program that has been live-
modified is no longer guaranteed to be representative of the code in its latest version. Thus the final code
version Ξm from the session, cannot be accepted as an adequate formulation of the game solely on the
evidence that the final game state σn from the session is a desired final state. The continuing execution
is dependent both on code that exists and on code that existed in the past but no longer exists.

One way of preventing the loss of access to early execution states is to build into a system facilities for
“remembering.” One is to start by backing up the original program formulation file, and then logging
every live-coding edit and every user-input event, and time-stamping them in such a way that the com-
plete session trajectory can be replayed. Another is to build-in state-externalization methods that allow
check-pointing the evolving session state at an arbitrarily fine temporal resolution. Such techniques can
be useful not only in addressing the divergence issue, but also to enable flexible error recovery when live
programming results in undesired execution states, such as errors or unexpected deletion of state data.

In our game, as in other SOLUZION framework games, all relevant execution state for a game session
is embodied in the instances of a game “State” class, which, defined in Python, is easily externalized
as a JSON text string, although we have not yet had sufficient reason to implement that. The sequence
of formulation file versions, represented in section 4.3 above as 〈Ξ0, . . .Ξm〉, could be written out to
file storage, with a new file (with index i as part of the file name of the i-th version), after each LP

PPIG 2020 118 www.ppig.org

save operation. Again, we have not implemented this. But the fact that we could do this suggests that
divergence in the sense of Basman et al should not be seen here as impugning the incorporation of the
LP role.

If it is desired that the final formulation file Ξm be a means to produce the final game state σn without
need of old formulation versions Ξ0, . . . ,Ξm−1, then an additional auto-replay mechanism should be
added to the SOLUZION infrastructure to permit any move sequence prefix 〈µ1,µ2, . . . ,µi〉 to be used
as a regression test on the latest Ξ j, and if ever a desired intermediate state is not attained, then the latest
formulation change should be undone and replaced with a formulation that achieves the correct state
before proceeding further in the game. Such a process may be worthwhile in a game-design context, but
might lead to player confusion if added to our game.

In our game scenario, as in musical live-coding, one can consider that the possible disparity (between
the current game state and the game state that would exist if the the game were re-run from the beginning
using only the latest versions of the operators) to be “part of the game” and not usually of concern, since
the live programmer is trying to help control the evolution of the game state rather than produce a new
piece of software.

Provided that an original problem formulation file is not thrown away, we maintain the possibility of
playing again along any particular full game trajectory, even without a recording of the original session.
However, to replay an entire game the same way, under evolving rules, the players, including the live
programmer, would need to perform the same actions and edits as happened in the earlier game, and
with very similar relative timing. Some ineffective edits and redundant saves could be skipped, but the
essential code updates and player moves would have to take place again in order to produce the same
state sequence.

4.11. Safety, Learnability, Empowerment, and Engendering Trust
We discuss a few more topics before closing: safety, learnability, technical empowerment, and how to
engender trust within a team having a live programmer.

By empowering one user (or a subset of users) to modify a running system or the rules of an in-progress
game, there is a danger that the system will break or become worse off than before any live programming.
This issue has been discussed by the second author elsewhere (Tanimoto, 2020). Using a game context
rather than a real emergency management situation can reduce the risk of real damage while facilitating
education and training about live programming and effective collaboration.

The learnability issue is particularly important in the emergency management context because it is rel-
atively likely that less-than-fully-trained personnel may have to come on board to help deal with an
emergency. Liveness in a programming environment can help a programmer new to that environment in
coming to understand the possible effects of various code changes and additions.

High technical empowerment for live programming means designing the base system in such a way that
a live programmer can change much of the system functionality. One way to achieve this is for the base
system to be written in a language such as Smalltalk that supports inspection and modification. In fact,
a commercial data analysis system known as Analyst was written with this in mind at Xerox PARC in
the 1980s (Thomas, 1997) (Xerox-PARC, 1987). Earlier, we discussed ways to limit such power, but it’s
worth mentioning that expanding the power is sometimes of interest.

Finally, trust and collaboration, especially important during emergencies, can be fostered through train-
ing exercises, including games. A live programmer (and in particular, a live scriptor), working in a
collaborative situation, a game or not, should be trustworthy. The observer role (as a supplement to the
roles present in the game) allows a player watch the code in real time, serving as a referee and a trusted
adviser for all the changes that the live programmer is making. This also allows the observer to function
as a deterrent to the live programmer abusing the premises of the framework. Often, the live programmer
only has the technical expertise to code, but not the expertise to decide what pressing issues need to be
fixed; in this specific simulation, the live programmer would probably lack the medical expertise needed

PPIG 2020 119 www.ppig.org

to decide what needs to be changed. Through observing the code, the observers can better inform the
live programmer on the action that needs to be taken. There is much more to these issues, but we leave
the discussion here.

5. Acknowledgements
The authors would like to thank the organizers and insightful reviewers, including Mariana Mărăs, oiu,
Luke Church, Colin Clark, Philip Tchernavskij, and those anonymous, as well as the play-testers who
tried out the game. We also thank the PPIG December attendees who provided feedback after our
presentation.

Appendix
There are two “.mov” format videos that support this paper’s narrative. They are available at this time
via the following URLs. Each is approximately 6 minutes in length. The first describes the collaborative
game referred to in the paper, and the second describes how the live programming role works.

http://xanthippe.cs.washington.edu/ppig20au/PPIG-Video1.mov
http://xanthippe.cs.washington.edu/ppig20au/PPIG-Video2.mov

6. References
Aaron, S., & Blackwell, A. (2013). From sonic pi to overtone: Creative musical experiences with

domain-specific and functional languages. In Proceedings of the first acm sigplan workshop on
functional art, music, modeling & design (p. 35–46). New York, NY, USA: Association for Com-
puting Machinery. Retrieved from https://doi.org/10.1145/2505341.2505346
doi: 10.1145/2505341.2505346

Basman, A., Church, L., Klokmose, C., & Clark, C. (2016). Software and how it lives on - embedding
live programs in the world around them. In Proceedings of the psychology of programming interest
group annual conference 2016 (ppig 2016).

Bødker, S., & Grønbæk, K. (1991, March). Cooperative prototyping: Users and designers in mutual
activity. International Journal of Man-Machine Studies, 34, 453-478.

Church, L. (2017). Becoming alive, growing up. Vancover BC, Canada. (Invited keynote, LIVE 2017,
workshop at SPLASH/OOPSLA)

Edwards, J., Kell, S., Petricek, T., & Church, L. (2019). Evaluating programming systems design. In
Proc. 30th annual workshop of the psychology of programming interest group, ppig 2019.

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for
everyone. Morgan and Claypool.

JSFiddle-Staff. (2020). Jsfiddle. Retrieved from https://jsfiddle.net
Juvare-Inc. (2020). Webeoc. Retrieved from http://juvare.com/webeoc
Kato, J. (2017). User interfaces for live programming. Keynote presentation at LIVE 2017, Vancouver,

Canada.
Kato, J., & Goto, M. (2016, 07). Live tuning: Expanding live programming benefits to non-

programmers. In Proceedings of ecoop live. ACM. Retrieved from https://junkato.jp/
live-tuning/

MacLean, A., Carter, K., Lövstrand, L., & Moran, T. (1990, March). User-tailorable systems: pressing
the issues with buttons. In Proceedings of the sigchi conference on human factors in computing
systems (p. 175-182).

McDirmid, S. (2013). Usable live programming. In Proc. 2013 acm international symposium on new
ideas, new paradigms, and reflections on programming & software (p. 53-62). ACM.

Petricek, T. (2019). Histogram: You have to know the past to understand the present. Retrieved from
http://tomasp.net/histogram/

Sorensen, A. (2005). Impromptu: An interactive programming environment for composition and per-
formance. In Proceedings of the australasian computer music conference.

Tanimoto, S. (2013). A perspective on the evolution of live programming. In Proc. 1st international

PPIG 2020 120 www.ppig.org

workshop on live programming (p. 31-34). Los Alamitos, CA: IEEE Computer Society.
Tanimoto, S. (2020). Multiagent live programming systems: Models and prospects for critical appli-

cations. In Programming ’20: Conference companion of the 4th international conference on art,
science, and engineering of programming (p. 90–96). New York: Assoc. for Computing Machin-
ery. Retrieved from https://doi.org/10.1145/3397537.3397556

Thomas, D. (1997). Travels with smalltalk. Retrieved from http://www.mojowire.com/
TravelsWithSmalltalk/DaveThomas-TravelsWithSmalltalk.htm

Turoff, M. (2002). Past and future emergency response information systems. Communications of the
A.C.M., 45, 19-32.

Victor, B. (2012). Inventing on principle. video. Retrieved from https://vimeo.com/36579366
World-Health-Organization. (2013). A systematic review of public health emergency operation centers

(eoc). Geneva, Switzerland. Retrieved 28 March 2020, from http://apps.who.int/iris/
bitstream/10665/99043/1/WHO_HSE_GCR_2014.1_eng.pdf

Xerox-PARC. (1987). The analyst workstation system. In Xerox special information systems.

PPIG 2020 121 www.ppig.org

Undecided? A board game about intertemporal choices in software projects

Christoph Becker,

Tara Tsang, Rachel Booth, Enning Zhang

Faculty of Information

University of Toronto

christoph.becker@utoronto.ca

Fabian Fagerholm

University of Toronto &

Department of Computer Science

Aalto University

fabian.fagerholm@aalto.fi

Abstract
Software projects teem with choices that have a temporal component – i.e. they involve uncertain future

outcomes that are spread in time. In the field of Judgment and Decision Making, such decisions are

called “Intertemporal Choice” situations. The board game “Undecided?” simulates a software project

through a series of intertemporal choices made by a team decision. It is designed to be educational and

fun, but its aim is to provide a platform for cognitive and social studies of decision making in software

projects. This paper describes the game and outlines possible research designs.

1. Overview
Software projects teem with choices that have a temporal component – i.e. they involve uncertain future

outcomes that are spread in time. In the field of Judgment and Decision Making, which draws on

psychology, behavioural economics, neuroscience and other fields, such decisions are called

“Intertemporal Choice” situations. In software projects, such choices surface in many areas including

technical debt management, iteration planning, personnel development, requirements prioritization, test

automation, refactoring, code documentation, and many other issues (Becker et al., 2018, 2017). The

temporal distance at which various outcomes occur in such situations has a marked effect on how they

are perceived, considered, evaluated, judged, and selected. But even within Judgment and Decision

Making, there is no one robust theory about how exactly people really make up their mind in these

situations – neither on the individual nor on the group level. We have performed initial behavioral

studies to establish the relevance of intertemporal choice in technical debt decisions (Becker et al., 2019;

Fagerholm et al., 2019), but these studies have not yet examined just how professionals make their

judgment.

The board game “Undecided?” simulates a software project through a series of choices made by a team

decision. In each round, the team makes a choice on a next “move” by selecting from a number of cards

at their disposal. Each move has uncertain effects in four dimensions (internal quality, external quality,

process, and team), some of which are spread in time. At periodic intervals, the team is faced with

challenges – meeting thresholds for each dimension; handling unforeseen events; justifying their

choices. The game is designed to be fun and educational – we anticipate it being played as part of a

moderated workshop and used for a debriefing discussion. But it is also designed to be a platform we

can use to study how teams consider the temporal aspects of their choices. The game materials will be

made available at cost to anyone interested. An app for hybrid and online play is in development.

In this contribution, we present the game design and outline possible research designs. At PPIG, we

organized a gameplay and discussion mini-workshop on multiple boards. Gameplay takes about 60-90

minutes. We then debriefed with the participants; provided a bit more context on the intertemporal

nature of decisions and our initial ideas for study designs; and finally, discussed possible applications,

extensions, educational applications, and study designs. Below, we introduce key concepts of

intertemporal choice, describe the game design, and outline possible research designs for studies using

the game to examine how people make intertemporal choices.

2. Intertemporal choices in programming, software engineering, and systems design
“Intertemporal choice” (Loewenstein et al., 2003) is the technical term psychology and adjacent

disciplines – behavioural economics, neuropsychology, neuroeconomics (Loewenstein et al., 2008) and

other disciplines studying Judgment and Decision Making (The Wiley-Blackwell handbook of judgment

and decision making, 2015) – give to decisions between uncertain outcomes that are distributed across

time. The choices may or may not be explicitly listed and distinguished; and their probability may be

clear or less clear. In contrast to the common probabilistic connotation of uncertainty, the term

PPIG 2020 122 www.ppig.org

mailto:christoph.becker@utoronto.ca
mailto:fabian.fagerholm@aalto.fi

ambiguity describes situations where probabilities themselves are not certain (Camerer & Weber, 1992;

March, 1978).

A few examples of software project choices that feature a strong intertemporal component are:

- Upgrading the software development toolchain is an effort to improve team and process

performance in the medium to long run, but the immediate outcome is missed productivity over

the short term, as the team spends time on building infrastructure instead of ‘billable hours’.

- Test automation is similarly an effort in improving the infrastructure used to develop, test and

deploy software that does not immediately result in features or improved quality.

- Professional development of team members or the whole team has no direct impact on the software

system under development, but it is certainly intended to have longer-term and far-reaching

benefits for everyone involved.

In each of these examples, the delayed effect is assumed to be positive, while the immediate effect is

generally seen as a cost to those making management-level decisions. (Whether that is appropriate is a

different question, because it may ignore the innate value of such activities as education!) In other

situations, the delayed effect is negative.

- Bugfixing under time pressure will often involve a choice between a quick solution that runs the

risk of introducing technical debt and a thorough approach that carries a higher momentary cost in

relation to the single bug, but introduces less technical debt to carry forward.

From the beginning of the software engineering discipline, there have been lamentations about the lack

of long-term perspective (Becker, 2014; Naur & Randell, 1969; Neumann, 2012; Parnas, 1994); but the

insights from psychology on this very subject have not been actively deployed. For example, the change

of valuation of positive effects across time seems to differ from the change that negative effects undergo

when they are pushed into the distance, with very interesting effects on so-called ‘mixed outcomes’

(Soman et al., 2005).

The classical, normative view of intertemporal choice takes a rationalistic stance: A discount rate is

used to model the difference that time should make in the evaluation of possible outcomes from the

perspective of an idealized agent. This results in a function that computes a value for an outcome

depending on its distance in time. The classic model of discounted utility by Samuelson uses an

exponential curve (Samuelson, 1937). Empirical results have often suggested that a hyperbolic curve is

a better fit for human behaviour (Frederick et al., 2002). There are however significant arguments

against the use of both, summarized in (Fagerholm et al., 2019). In addition, one prominent study

(Zauberman et al., 2009) suggested that the concept of mathematical discount functions is entirely

misguided, since the human brain does not process time in this way – instead, this study demonstrated

that instead of discounting future events, the participants perceived events in time proportionally to their

distance from the present. Perception, rather than the discounting of the future, was the explanatory

model proposed and empirically validated

On a broader level, dissatisfaction with the ‘rationalistic’ models of decision making in general had led

already in the 70s and 80s to the emergence of naturalistic decision making studies that focus on

understanding how people think outside the confines of artificial experimental settings and narrow data

collection methods such as the infamous survey questions deployed by Tversky and Kahnemann

(Kahneman & Tversky, 1979). Most prominently, Klein led large ethnographic studies of decision

making in natural settings to understand how highly performing professionals effectively deploy their

expertise and knowledge (Klein, 1998). His focus was on what he terms the macrocognitive system of

decision making – the entire system of environmental cues, roles, incentives and structures, knowledge,

prior experience, work processes, tools, available information, time constraints, etc. which influences

the cognitive processes – understood psychologically and socially – which comprise decision making

as a situated process. This view is akin to the well-known view of cognition “in the wild” (Hutchins,

1995) which has been influential in HCI (Rogers & Marshall, 2017). These naturalistic decision making

studies have led to profound insights into the nature of expertise and skills, and the cognitive processes

at work in experienced professionals (Klein, 1998). In Software Engineering, the focus of attention has

been firmly on the normative, rationalistic perspectives and the associated research program of

PPIG 2020 123 www.ppig.org

heuristics and biases (Mohanani et al., 2018), with some notable exceptions that found significant

evidence for the value of NDM in SE (Zannier et al., 2007).

In our previous studies, we found significant evidence that professionals acted as if they discounted the

future (Becker et al., 2019; Fagerholm et al., 2019) – though whether it was because of perception or

because of something like a discount factor, we do not know. In an ongoing large-scale study, we

examine the cognitive processes at work in such situations using Cognitive Task Analysis methods

developed by Klein and others (Crandall et al., 2006). The game Undecided? is a next step: By creating

a simulation environment that playfully embeds a range of intertemporal choice situations in a group

decision making setting, we hope to create a platform that allows us to study intertemporal choice in

SE from multiple angles using many different methods.

3. The game: UNDECIDED?

Overview
Undecided? is an educational game that seeks to provide players with a general and integrated

understanding of project management as well as software, product, and systems development. It is a

tabletop game that uses a game board to simulate project phases and cards to mimic the actions

undertaken and obstacles encountered in the development process. Players work together to complete

a project, hitting milestones and striving for objectives throughout project phases. While Undecided?

focuses strongly on collaboration, individual players also work to achieve personal goals corresponding

to their role on the project team. This creates the possibility of moderating the tension between group

and individual goals by varying aspects of the background scenario that provides a narrative frame for

the game.

Figure 1 The start square is on the lower right of the board, the final gate on the upper left.

Undecided? is played on a rectangular board partitioned in three stages, with a start square in one corner

and a target range in the opposite corner (shown in Figure 1). Each board facilitates play for one single

team. Multiple teams compete by playing on adjacent boards. In each round of the game, the team draws

cards and decides which of the cards they currently hold to play next. Playing a card means to place it

PPIG 2020 124 www.ppig.org

on the board, adjacent to a previous card, so that it covers eight squares. Crossing the gate from one

stage to the next, shown by the colored lines, requires certain conditions to be fulfilled.

The team keeps a score on the following categories that represent the robustness of the project:

• Internal Quality of the software system under development

• External Quality of the software system under development

• Process Quality

• Team Strength

Each card – i.e. each possible action – will influence the team’s current score on some or all of the four

dimensions. How much exactly is revealed after the move is performed, but the card design indicates

visually what will happen, as illustrated by Figure 2. Note that Major Toolchain Upgrade is the only

intertemporal choice in this example set. The four dots indicate that the benefit on Process will manifest

over the following four rounds. The orange semicircles indicate that there is a risk of negative effects.

In contrast, architectural design and feature development are relatively straightforward positive

contributions to specific aspects of the project.

Figure 2 Selected action cards

Game play: Roles, Setup and Rules
A game facilitator is involved in the form of either a person who controls the game or an app (under

development). The facilitator does not participate in play because they have access to secret

information such as precise gate values and will determine how action cards are scored.

Player roles are determined before the game starts either randomly or through deliberation. Roles have

various advantages when certain cards are laid, and outline role-specific goals that a player must meet

to gain – or prevent the loss of – personal action points (AP).

Player roles are as follows:

• UX Lead

▪ Focuses on External Quality

• Team Lead

PPIG 2020 125 www.ppig.org

▪ Focuses on Team Strength

• System Architect

▪ Focuses on Internal Quality

• Technical Lead

▪ Focuses on Process Quality

Role-specific goals are representative of the overall standards of project management and development,

with AP awarded to players if various cards are laid during certain project phases. (Action Points can

be used collectively in specific “Blank” Action Cards.) For example, a UX lead receives +4 AP if a user

studies card is played in the first phase, as it is generally regarded as an important step to consider early

on in development. If a user studies card isn’t laid in the first phase, the UX lead loses 4 AP to represent

the impact of failing to determine user needs.

To set up, the Facilitator takes the Facilitator Notes. These are confidential: Players must not see them.

Players begin by reading their Game Scenario. The Facilitator reads their information packet based on

the game scenario, keeping the contents secret unless otherwise directed. Players then set up the game

board and shuffle the card deck. Players are assigned a role, either at random using a dice roll or through

deliberation. Players then take their role description sheet. Next, the players draw 5 team cards from the

deck and laid face-up in front of all players.

• If a “play immediately” event card is drawn at this point, return it to the deck and draw another

card in its place. Examples of such cards are shown in Figure 3.

Figure 3 A sample of "Play immediately" cards

Once all elements are in place, gameplay begins. The team lead goes first. The first card laid must begin

on the start square, at the bottom right of the board.

Core Gameplay Loop

Players take turns by moving clockwise around the table. Players begin their turn by drawing a card

from the deck.

• If the card is a “play immediately” event card, the player lays the card on the board, follows the

instructions, and ends their turn.

The player then consults their team to determine the next card to lay. Though collaboration is

encouraged, the current player makes the final decision as to what card is laid.

PPIG 2020 126 www.ppig.org

• If a Blank Action card is in the hand, players can ask team members to contribute their AP

points to the card. If the player is a senior-level team member, they can take as many action

points as desired from team members. (Yes, there is a level of cruelty to that.)

The card is then laid on the game board so it is touching the edge of at least one other card. Cards can

be laid in any orientation as long as it follows the grid pattern on the gameboard

• If the card is laid over an Event Square (grey circle), the current player partakes in the event,

then ends their turn.

Cards can only be laid in the current project phase, unless the team wishes to attempt a Gate Pass and

move onto the next project phase.

Gate Pass

A Gate Pass is initiated by a player laying a card across one of the orange borders on the game board.

All players, except senior-level players must then take part in a project review, constructing a narrative

of their project up to the current point. The Senior-level player(s) then select the player with the best

project story, and award them +3 AP if the gate pass is successful.

After the project review, the gate scores are revealed. If the team’s scores exceed or equal the gate

scores, they move into the next project phase.

If the scores fall short in any category, the player must leave the card on the board and turn it over. This

card becomes a “dead” card and does not add to the team score, with the additional punishment of

blocking part of the gate. The current player’s turn is then over, and the team must continue to build

their project in the current phase and attempt to pass again by repeating the process.

Figure 4 Partial view of an Undecided? board with selected cards

Winning/Losing the Game

The game is won when the team passes the final gate on the game board.

• After the final gate is passed, final scores are tallied.

PPIG 2020 127 www.ppig.org

https://docs.google.com/document/d/1yS4qoRA2s1CMK9UjNtNF5kECD63HZWDNnMFGBonm4E0/edit#heading=h.o9uxx8dzneub
https://docs.google.com/document/d/1A8vTn_bLDHR2pZ2lecijlghvvnX2ip9uDOmrCHkDtx4/edit#heading=h.htc8etjq55lg

The game is lost if:

• The team runs out of room to lay cards on the game board.

• The team runs out of cards in the deck

• The team makes a choice in a Game Scenario that triggers a loss state.

Figure 4 shows parts of a finished board with selected cards.

Cards and Scoring
Each move consists of playing a card. Each Card represents a prototypical action that the team can take.

The team is scored on the four categories that represent the robustness of the project:

• Internal Quality of the software system under development

• External Quality of the software system under development

• Process Quality

• Team Strength

Points in each category are earned through the laying of cards on the game board.

When a card is laid, the facilitator uses their score sheet to determine how points are distributed.

• Some Event Cards are scored based on a dice roll. Dice rolls result in a success or failure of

the event/action. In this instance, the facilitator must input the result of the dice roll into the

score sheet for the score to be calculated.

The game scenario determines what scores are needed in each of the four categories for the players to

progress through project phases.

The game facilitator uses a predefined spreadsheet to determine score values for the team. The

facilitator is in charge of inputting the title of the played card into the sheet, and of reading the score

values of that card aloud once they have been calculated by the sheet. A Facilitator Notes document

provides specific instructions.

Scenarios and Major Events
The game is structured by the main narrative. Currently, we offer two narratives:

- In Angry Cats, the team is part of a start-up game studio and has just signed a contract with a

prominent publisher to develop a new game and bring it to market.

- In DysTalk, the team has formed a start-up to develop a secure communication and networking

product.

Each scenario comes with one major event that happens at an undisclosed point in the game. The event

is triggered by external forces and will pose a significant intertemporal choice to the team outside the

regular game play. But we shall not give away what it is – where would be the fun in that?

Moderation, online game play, and app development
As mentioned above, the game is based on some form of facilitation – in the initial deployment, that is

a human moderator using a macro-enabled spreadsheet, but we are also developing an app that handles

the game mechanics. The game cards are equipped with individual QR codes that can be scanned in

order to make a move, and the app will take over the facilitation role once developed. We envision that

the app may also

- Facilitate team competition,

- Incorporate educational content such as short explanatory videos,

- Facilitate a playful interaction across time between different teams, and

- Allow a board-less gameplay that facilitates remote group play with virtual cards.

To accommodate the pandemic circumstances, the visual game materials were imported to an online

whiteboard to facilitate game play in parallel breakout groups, as shown in Figure 5.

PPIG 2020 128 www.ppig.org

4. Intertemporal Choices in Undecided?
Intertemporal choices in this game come in two different forms: routine and exception. The routine

choices arise out of a subset of cards that carry intertemporal components, as outlined above. The

exceptional choices arise out of the major game event that strikes the team along the course of game

play and requires their attention.

The choices differ in several key dimensions.

- Uncertainty and ambiguity. The exact size of effects is uncertain – both spreadsheet and app

employ simple randomizing functions. But there is also an element of ambiguity since the

probability distribution remains blurred for the players. The visual design of effects as variously

sized dots represents an intentional effort to keep game play from becoming a numbers’ game. We

do not want players to directly calculate the maximum number of achievable points and devise

some heuristics, as that would circumvent what the main focus of interest is – the deliberation

around the various dimensions and time. By developing such a heuristic, a player would in fact be

playing a different game. In our prototype game play sessions, this worked quite well, but will need

to be evaluated more rigorously.

- Temporal and social distance. Through their team roles, players are tied into a focus on certain

dimensions. They become spokespersons for those dimensions, and they may in some situations

not mind a loss in other dimensions. However, it is clear at all times that the team can only win

collectively.

- Large vs small outcomes. Routine actions carry smaller weights, while the major event carries

larger implications and highly ambiguous risks.

- Explicit vs implicit choices. The selection of cards provides a very explicit – and not entirely

realistic – choice of possible actions. This is in some sense a limitation – NDM researchers such

as Klein have argued convincingly that comparative evaluation of clearly enumerated alternatives

Figure 5 Segment of the online board game environment at PPIG 2020

PPIG 2020 129 www.ppig.org

is often not the focus of real-world decision making under time pressure. However, some choices

are more implicit, and some types of cards carry an open-ended scoring scheme that allows the

team themselves to decide what action to take and how to label it.

- Rhythm. The regular routine choices come in each round, but some action cards are labelled “play

immediately” and thus disrupt the cycle of deliberation, choice and status update. The major event

is initiated by the facilitator, and not mentioned in the instructions for players, so it is designed to

catch them by surprise.

- Deliberation, choice, and reflection. Each round will typically involve a phase of discussion

resulting in a choice. Different configurations of roles can be deployed. However, some hierarchy

is foreseen through the introduction of senior roles, and some choices can be taken by senior roles

that affect others and can overrule others. Finally, the narrative reflection requested at each Gate

Pass provides a retrospective that places the players into a narrative mode quite distinct from the

deliberation and choice mode. Players can get quite creative in the story they tell at that point.

These design choices were made to facilitate a range of interventions and study designs to allow us to

examine how individuals and groups reason; how variations in the setting may influence their choices;

and to provide a situation that we can observe and retrospectively analyse using techniques from

Cognitive Task Analysis.

To deliver educational value, we anticipate the game should be embedded in a workshop setting with a

debriefing session that explores the nature of intertemporal choice and its role in software projects and

includes a guided team reflection. It should also ask: What is realistic about the game? What isn’t?

How is reality different? How and where are intertemporal choices hiding in our practice? Do we need

to change the way we approach such choices, and how?

The next section outlines a range of study designs we envision.

5. Research Designs
This section shortly outlines a range of envisioned uses of the game as a research platform and some of

the possible choices and challenges in study design. We first outline a range of instruments,

interventions and data collection methods that are of relevance in this setting, then outline possible

study designs with concrete aims and combinations of instruments.

- How to measure discounting: As discussed in previous studies (Becker et al., 2018; Fagerholm

et al., 2019), there are various ways of measuring the amount to which participants discount future

outcomes, and a choice has to be made for each study which is most appropriate. In our recent

studies, we opted for a more robust measure of the general amount of discounting over time per

participant called Area Under Curve. It is worth mentioning that: (1) the amount of discounting

varies wildly across participants in our studies (Fagerholm et al., 2019) and across studies in

general (Frederick et al., 2002)(2) some of our participants do not exhibit discounting at all. It is

therefore well worth examining the range of individual responses to explore possible reasons and

forms of reasoning or the absence thereof.

- Demographics and differences in individual players should thus be explored. In our prior studies,

we found no effects of education nor the amount or area of professional experience on discounting,

but identified a significant effect – the larger the range of professional experience, the less

participants discounted (Fagerholm et al., 2019), pointing to a possible role of empathy in how

psychological distance affects discounting (Weber, 2006).

- Time perception, instead of discounting, has been proposed as an explanation for the appearance

of discounting behavior (Zauberman et al., 2009). In that study, participants were asked to draw a

line and to evaluate the length of lines in relation to time. A similar instrument could be deployed

to establish individual differences in time perception before game play.

- Think Aloud Protocol analysis can be used to a limited degree in a group setting, but it can be

useful in individualized game modes such as online game play.

- More generally, Cognitive Task Analysis offers an entire toolbox of methods including interviews

using Critical Incident Method for retrospective interviews as well as observational methods that

can be deployed non-obtrusively in game play settings.

PPIG 2020 130 www.ppig.org

- Surveys and interviews support an evaluation of the game from the perspective of participants in

terms of educational value (short-term and long-term learning outcomes) as well as enjoyment

value (short-term) and possible side-effects (e.g. team formation, interpersonal relations)

- Finally, we hope to explore the effects of interventions on intertemporal choice, guided by

emerging insights such as the possible role of empathy in overcoming psychological distance; the

role of specific education modules (such as technical debt) on discounting; or a range of priming

effects. For example, the Empathy Toy® is “a blindfolded puzzle game that can only be solved

when players learn to understand each other”, a playful way to activate empathy skills in players

(The Empathy Toy, n.d.). Would its use before game play influence the choices made by

participants?

Of course, the range of choices made for each concrete study will have to involve a careful configuration

of designs, instruments and interventions fit for the purpose and methodological assumptions of the

study. For example, a study could examine the role of group composition and incentive structures on

reasoning strategies and discounting outcomes. The roles embedded in game design involve a few

structural conflicts of interests, but they are built toward an overarching team interest. Different

instructions for each team member, and different incentive structures, could be used to explore how

they affect people’s reasoning and group dynamics. This would involve a very different design from a

study to explore to which degree the sensitization to intertemporal choice arising from playing the game

leads to future shifts in discounting behavior on the side of participants.

We currently aim to prioritize the following types of studies ourselves.

- In Cognitive Task Analysis studies, we aim to observe game play in groups and conduct

retrospective interviews with groups and/or participants, supported by additional data collection

instruments including pre- and post-game surveys and measures of discounting.

- In Randomized Control Trials, we hope to assess the effect of

o Interventions outside the game such as an empathy workshop or the delivery of an

education module, as well as

o Variations in game design that vary the architecture of choice that shapes and

configures how participants enter the choice situation and which information is

presented to them. This can involve variations in the time scales and how they are

presented – for example as weeks, months or sprints; variations in the language used

to frame outcomes; variations in the emphasis given to gains and losses; or simply

variations in the instructions given to individual players.

- We aim to explore the game as intervention embedded in a workshop, in industry or community

settings. We envision the first rounds of this as Action Research to explore the possible values and

effects of the game and associated workshop, and to identify future directions of game design and

development. This could eventually lead to a more quantitative validation of the game’s value,

which requires a clearly identified dependent variable such as the amount of discounting exhibited

by a team or person. That needs to be measured through a validated instrument, for which our

previous study design may provide a starting point (Fagerholm et al., 2019).

6. Conclusions
Choices involving uncertain future outcomes that are spread in time – so-called intertemporal choices

– abound in software projects. Multiple factors impact how such choices are made, including the

uncertainty and ambiguity of the options and outcomes, the combination of favorable and unfavorable

outcomes at different points in time, and the psychological distance to people who are affected. This

macrocognitive view of decision making situates the cognitive processes of decision-makers in the

social environment.

We have previously examined intertemporal choices in software engineering and found evidence for

extensive discounting, but also of large individual differences (Becker et al., 2019; Fagerholm et al.,

2019). However, what determines the choices is still unclear. The board game "Undecided?" simulates

a software project through a series of intertemporal choices made by players in teams. The game is

educational and fun, and it aims to provide a platform for cognitive and social studies of decision

PPIG 2020 131 www.ppig.org

making in software projects. This paper describes the game and outlines possible research designs in

which the game is used to shed more light on how decisions are made in software projects.

7. Acknowledgements
The design of Undecided? was partially funded by the Canadian Natural Sciences and Engineering

Research Council under NSERC RGPIN-2016–06640. The game was designed while Fabian

Fagerholm was a Postdoctoral Fellow at the University of Toronto.

8. References
Becker, C. (2014). Sustainability and Longevity: Two Sides of the Same Quality? Proceedings of the

Third International Workshop on Requirements Engineering for Sustainable Systems Co-

Located with 22nd International Conference on Requirements Engineering (RE 2014), 1216,

1–6. http://ceur-ws.org/Vol-1216/

Becker, C., Chitchyan, R., Betz, S., & McCord, C. (2018). Trade-off Decisions Across Time in

Technical Debt Management: A Systematic Literature Review. Proceedings of TechDebt ’18:

International Conference on Technical Debt, Co-Located with the 40th International

Conference on Software Engineering (ICSE 2018). https://doi.org/10.1145/3194164.3194171

Becker, C., Fagerholm, F., Mohanani, R., & Chatzigeorgiou, A. (2019). Temporal Discounting in

Technical Debt: How do Software Practitioners Discount the Future? 2019 IEEE/ACM

International Conference on Technical Debt (TechDebt), 23–32.

https://doi.org/10.1109/TechDebt.2019.00011

Becker, C., Walker, D., & McCord, C. (2017). Intertemporal Choice: Decision Making and Time in

Software Engineering. Proceedings of the 10th International Workshop on Cooperative and

Human Aspects of Software Engineering, 23–29. https://doi.org/10.1109/CHASE.2017.6

Camerer, C., & Weber, M. (1992). Recent developments in modeling preferences: Uncertainty and

ambiguity. Journal of Risk and Uncertainty, 5(4), 325–370.

https://doi.org/10.1007/BF00122575

Crandall, B., Klein, G., & Hoffman, R. R. (2006). Working Minds: A Practitioner’s Guide to Cognitive

Task Analysis (1 edition). A Bradford Book.

Fagerholm, F., Becker, C., Chatzigeorgiou, A., Betz, S., Duboc, L., Penzenstadler, B., Mohanani, R.,

& Venters, C. C. (2019). Temporal Discounting in Software Engineering: A Replication Study.

2019 ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM), 1–12. https://doi.org/10.1109/ESEM.2019.8870161

Frederick, S., Loewenstein, G., & O’donoghue, T. (2002). Time Discounting and Time Preference: A

Critical Review. Journal of Economic Literature, 351–401.

Hutchins, E. (1995). How a Cockpit Remembers Its Speeds. 19(3), 265–288.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica: Journal of the Econometric Society, 263–291.

Keren, Gideon., & Wu, George. (Eds.). (2015). The Wiley-Blackwell handbook of judgment and

decision making (http://go.utlib.ca/cat/10376181). Wiley-Blackwell.

Klein, G. A. (1998). Sources of Power: How People Make Decisions (http://go.utlib.ca/cat/8525456).

MIT Press.

Loewenstein, G., Read, D., & Baumeister, R. F. (2003). Time and Decision: Economic and

Psychological Perspectives of Intertemporal Choice. Russell Sage Foundation.

Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annu. Rev. Psychol., 59, 647–672.

March, J. G. (1978). Bounded rationality, ambiguity, and the engineering of choice. The Bell Journal

of Economics, 587–608.

Mohanani, R., Salman, I., Turhan, B., Rodriguez, P., & Ralph, P. (2018). Cognitive Biases in Software

Engineering: A Systematic Mapping Study. IEEE Transactions on Software Engineering, 1–1.

https://doi.org/10.1109/TSE.2018.2877759

Naur, P., & Randell, B. (Eds.). (1969). Software Engineering: Report on a Conference sponsored by

the NATO Science Committee. NATO Scientific Affairs Division.

Neumann, P. G. (2012). The Foresight Saga, Redux. Commun. ACM, 55(10).

https://doi.org/10.1145/2347736.2347746

PPIG 2020 132 www.ppig.org

Parnas, D. L. (1994). Software Aging. Proceedings of the 16th International Conference on Software

Engineering, 279–287. http://dl.acm.org/citation.cfm?id=257734.257788

Rogers, Y., & Marshall, P. (2017). Research in the Wild. Synthesis Lectures on Human-Centered

Informatics, 10(3), i–97. https://doi.org/10.2200/S00764ED1V01Y201703HCI037

Samuelson, P. A. (1937). A Note on Measurement of Utility. The Review of Economic Studies, 4(2),

155–161. JSTOR. https://doi.org/10.2307/2967612

Soman, D., Ainslie, G., Frederick, S., Li, X., Lynch, J., Moreau, P., Mitchell, A., Read, D., Sawyer, A.,

Trope, Y., Wertenbroch, K., & Zauberman, G. (2005). The Psychology of Intertemporal

Discounting: Why are Distant Events Valued Differently from Proximal Ones? Marketing

Letters, 16(3), 347–360. https://doi.org/10.1007/s11002-005-5897-x

The Empathy ToyⓇ. (2020). https://twentyonetoys.ca/pages/empathy-toy

Weber, E. U. (2006). Experience-Based and Description-Based Perceptions of Long-Term Risk: Why

Global Warming does not Scare us (Yet). Climatic Change, 77(1–2), 103–120.

https://doi.org/10.1007/s10584-006-9060-3

Zannier, C., Chiasson, M., & Maurer, F. (2007). A model of design decision making based on empirical

results of interviews with software designers. Information and Software Technology, 49(6),

637–653. https://doi.org/10.1016/j.infsof.2007.02.010

Zauberman, G., Kim, B. K., Malkoc, S. A., & Bettman, J. R. (2009). Discounting Time and Time

Discounting: Subjective Time Perception and Intertemporal Preferences. Journal of Marketing

Research, 46(4), 543–556. https://doi.org/10.1509/jmkr.46.4.543

PPIG 2020 133 www.ppig.org

	PPIG_2020_paper_10
	PPIG_2020_paper_3
	PPIG_2020_paper_14
	PPIG_2020_paper_1
	PPIG_2020_paper_1_response
	PPIG_2020_paper_11
	PPIG_2020_paper_6
	PPIG_2020_paper_12
	Introduction
	Background
	Course Structure and Development
	Analysis
	Demographics
	Comparison with Historic Data
	Course Outcomes and Grades

	Sub-Group Analysis
	Course Grade
	International vs Domestic Students
	Gender

	Conclusions and Future Work
	Threats to Validity
	Data Availability

	References

	PPIG_2020_paper_2
	PPIG_2020_paper_13
	PPIG_2020_paper_18
	PPIG_2020_paper_15
	PPIG_2020_paper_16
	PPIG_2020_paper_17
	PPIG_2020_paper_7
	Blank Page
	PPIG 2020 proceedings front page.pdf
	pre-print proceedings cover
	PPIG_2016_paper_1
	PPIG_2016_paper_2
	Abstract
	1. Introduction
	This work is organized as follows: First, section 2 views studies that have been conducted to describe the challenges of learning programming. In section 3, we discuss the educational visualisation method for learning programming. Section 4 is concern...
	2. The challenges of Learning Programming
	There is high demand for innovations that support the teaching of programming and deal with these many inherent challenges faced by both teachers and students.
	3. Visualisation
	1.
	2.
	1
	2
	3
	1
	2
	3
	1
	2
	3
	3.1 Visualisation tools used in this study

	4. Threshold concepts
	5. The study
	1
	2
	4
	5
	4
	5
	5.1 Research methodology
	5.2 Tools selection
	5.3 Example problems
	5.3.1 Example problem 1 (the loop)
	5.3.2 Example problem 2 (the object-oriented program)
	5.3.3 Example problem 3 (the parameter –passing by value/reference)

	5.4 Data Analysis Strategy

	1.
	2.
	3.
	4.
	5.
	6. Results
	6
	6.1 Controlling the execution of the code (n=18)
	6.2 Availability of the tool (n=16)
	6.3 Error explanation (n=13)
	6.4 Interface/Usability of the tool (n=13)
	6.5 Programming languages supported (n=9)
	6.6 Expression evaluation (n=5)
	6.7 Representation of Class Hierarchy (n=2)
	6.8 Maintaining an event history (n=2)
	6.9 Tool comparison

	7. The limitations of the study
	8. Conclusion and future work
	9. References

	PPIG_2016_paper_3
	PPIG_2016_paper_5
	PPIG_2016_paper_6
	PPIG_2016_paper_7
	PPIG_2016_paper_8
	PPIG_2016_paper_9
	PPIG_2016_paper_11
	PPIG_2016_paper_12
	PPIG_2016_paper_13
	PPIG_2016_paper_15
	PPIG_2016_paper_16
	PPIG_2016_paper_17
	PPIG_2016_paper_18
	PPIG_2016_paper_19
	PPIG_2016_paper_20
	PPIG_2016_paper_21
	PPIG_2016_paper_22
	PPIG_2016_paper_23
	PPIG_2016_paper_25
	PPIG_2016_paper_26
	PPIG_2016_paper_27
	PPIG_2016_paper_29
	PPIG_2016_paper_30
	PPIG_2016_paper_32
	PPIG_2016_paper_33
	PPIG_2016_paper_35
	Abstract
	1. Introduction
	2. Related Work
	3. Study Design
	4. Findings on Spatial Navigation
	5. Current Prototype
	6. References

	PPIG_2016_paper_36
	PPIG_2016_paper_37
	PPIG_2016_paper_38
	1. Introduction
	2. First part
	2.2.1 Questionnaire on activity 2
	2.2.2 Writing the program

	3. Second part
	3.1 Activity
	3.2 Running the program

	4. Third part
	The final activity consists of asking the students to anticipate the results of small Python programs (the students have been instructed in basic Python). They are then asked to run them and compare those results with the predictions they made. The students worked individually and wrote their answers down. The activity is described as follows.
	5. Preliminary analysis
	6. Acknowledgements
	7. References
	8. Appendix
	8.1 CPU
	8.2 ALU/Memory
	8.3 Display and User

	PPIG_2016_paper_39
	PPIG_2016_paper_40
	PPIG_2016_paper_41
	PPIG_2016_paper_2.pdf
	Abstract
	1. Introduction
	This work is organized as follows: First, section 2 views studies that have been conducted to describe the challenges of learning programming. In section 3, we discuss the educational visualisation method for learning programming. Section 4 is concern...
	2. The challenges of Learning Programming
	There is high demand for innovations that support the teaching of programming and deal with these many inherent challenges faced by both teachers and students.
	3. Visualisation
	1.
	2.
	1
	2
	3
	1
	2
	3
	1
	2
	3
	3.1 Visualisation tools used in this study

	4. Threshold concepts
	5. The study
	1
	2
	4
	5
	4
	5
	5.1 Research methodology
	5.2 Tools selection
	5.3 Example problems
	5.3.1 Example problem 1 (the loop)
	5.3.2 Example problem 2 (the object-oriented program)
	5.3.3 Example problem 3 (the parameter –passing by value/reference)

	5.4 Data Analysis Strategy

	1.
	2.
	3.
	4.
	5.
	6. Results
	6
	6.1 Controlling the execution of the code (n=18)
	6.2 Availability of the tool (n=16)
	6.3 Error explanation (n=13)
	6.4 Interface/Usability of the tool (n=13)
	6.5 Programming languages supported (n=9)
	6.6 Expression evaluation (n=5)
	6.7 Representation of Class Hierarchy (n=2)
	6.8 Maintaining an event history (n=2)
	6.9 Tool comparison

	7. The limitations of the study
	8. Conclusion and future work
	9. References

	9-PPIG-2017-perticas.pdf
	Introduction and motivation
	Related research
	The Role of Sensorimotor Integration and Abstraction in Learning
	Maps and Visualizations inspired from Dual-Coding

	Image of Algorithm (IoA)
	Introduction
	Initial Observations

	Feature Extraction and Analysis of Patterns in IoAs
	Spatial Features
	Temporal Features

	Feature-based Clustering
	Overview
	Self-Organizing Map (SOM)
	Control Experiments

	IoA Classification
	Overview
	Multilayer Perceptron (MLP)
	Convolutional Neural Network (CNN)

	Conclusions and Future Work
	Acknowledgement

	9-PPIG-2017-perticas.pdf
	Introduction and motivation
	Related research
	The Role of Sensorimotor Integration and Abstraction in Learning
	Maps and Visualizations inspired from Dual-Coding

	Image of Algorithm (IoA)
	Introduction
	Initial Observations

	Feature Extraction and Analysis of Patterns in IoAs
	Spatial Features
	Temporal Features

	Feature-based Clustering
	Overview
	Self-Organizing Map (SOM)
	Control Experiments

	IoA Classification
	Overview
	Multilayer Perceptron (MLP)
	Convolutional Neural Network (CNN)

	Conclusions and Future Work
	Acknowledgement

