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Abstract 
This paper describes the redesign and extension of an old but effective educational CPU visual 

simulator. The main goal is to support novices in understanding the behaviour of the key components 

of a CPU, focusing on how code written in high-level languages is actually executed on the hardware 

of a computer. Extensions include the addition of CPU flags and related conditional jump instructions 

to better illustrate the control flow in low-level languages; the possibility to define and use labels for 

numerical addresses, in order to clarify the concept of variable as well as the mapping of high-level 

programming constructs to assembly language; enhanced color-coded animations to better understand 

the sequential nature of the control unit and the role of the control bus in addition to the address and 

data buses. While the old simulator was based on a Harvard architecture, the new one is based on the 

classical Von Neumann architecture, to illustrate in simpler terms the concept of stored-program 

computer. Additional enhancements include a new, more realistic, compare instruction (with two 

addressing modalities), bit-wise logical operations, and operational improvements such as simulation 

speed control and better code editing functionalities. 

The new simulator has been developed following an Open Pedagogy / OER-enabled pedagogy 

approach, where a group of students incrementally modified the old simulator as part of their 

educational activities. This approach reduced the time spent on “disposable” traditional assignments, 

challenging students to address a real-world professional problem. Making available the result of these 

efforts with an open licence, we aspire to contribute to a self-fuelling cycle which will hopefully 

continuously improve and extend the resource for future students and teachers. 

1. Introduction
It is well known that often students, despite studying both programming with high-level languages as

well as the basics of computer architecture, do not fully grasp how code written in high-level languages

is actually executed on the hardware of a computer (Evangelidis et al., 2001; Miura et al., 2004). The

main goal underlining this activity, was to develop a tool to support this understanding.

A wide range of simulators capable to visualize the execution of the low-level operations in a computer, 

notably including CPUs, have been developed with this aim. Decker and Hirshfield (1998) developed 

a simplified CPU visual simulator, called PIPPIN, which supported an essential set of instructions, 

whose execution was dynamically visualized in a simplified functional architecture (Figure 1). 

The CPU simulator was complemented with another tool, Rosetta, to translate arithmetic expressions 

of assignment statements directly to PIPPIN code. The main focus of these combined tools was indeed 

the parsing and translation of arithmetic expressions to assembly code, and its visual execution. PIPPIN 

and Rosetta were developed as Applets, certainly a suitable technology at that time, and were associated 

with the book: “The Analytical Engine: An Introduction to Computer Science Using the Internet” 

(Decker and Hirshfield, 2001). The goal of the authors was not to develop very comprehensive and 

universal tools, but rather simplified tools to show students “enough about how computers operate to 

convince them that the rest is mere details” (Decker and Hirshfield, 1998). The tools were quite popular: 

the book sold thousands of copies (S. Hirshfield, personal communication, April 2, 2021), and there 

were versions openly available on the Internet. 
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Figure 1 – A screenshot of the original PIPPIN (with an expanded section on the right) 

 

The author of this paper too made use of PIPPIN for almost two decades in adult-education specialized 

computer-science courses in Italy (ITIS P. Paleocapa – Bergamo), frequently combined with other tools 

such as the Little Man Computer or emulators of real processors, attempting to avoid their weaknesses 

while exploiting their advantages. Yet, as will be discussed, mixing different tools did not prove to be 

the best solution. This multi-year experience teaching and observing students experimenting with the 

simulator, including discovering the difficulties they faced as well as the misconceptions and bad habits 

that sometimes they picked up, helped to identify desirable extensions. Notably, the porting of the tool 

(from an obsolete applet to a Java application) and the implementation of the extensions were carried 

out by the students themselves, in the context of open educational practices as part of their educational 

activities in object oriented programming in Java. The paper is organized as follows: Section 2 identifies 

and motivates the requirements, Section 3 illustrates the new design, Section 4 presents the development 

process as an open-pedagogy activity, and Section 5 concludes by discussing future plans. 

2. Requirements and their rationale 
As previously introduced, the attempted solution to support students in understanding how high-level 

code ends up being executed in a computer, has been for many years to mix different tools, trying to 

cherry pick their best features. PIPPIN is very simple and supports effective visual animations, but lacks 

some important features. For example, as noted by Miura et al. (2004, p. 1067) too, it focuses on the 

translation of assignment expressions but “it is insufficient for students to understand the whole process 

of program translation followed by execution in a computer”. The Little Man computer, conceived by 

Madnick in the sixties at MIT, is a widely known instructional model to explain the basic architecture 

and operations of computers. Many similar visual implementations exist (Yurcik and Osborne, 2001), 

and I used in particular the excellent implementation by Higginson (2014). The Little Man Computer 

simulator has a more comprehensive instruction set than PIPPIN, and good animations too, but it does 

not represent with sufficient realism the functional architecture of a computer. For example, the memory 

is represented as a set of mailboxes, there is no representation of the CPU internal paths, and it is not 

possible to switch to a binary visualization of the information (code and data). The emulators are 

obviously realistic by definition, but their complexity can be overwhelming for less experienced 

students, and they lack detailed animations desirable for novices. Finally, such a variety of tools use 

different instruction sets, slightly different architectures (for example linear memory versus segmented 

memory), and different operational environments. Hence, the students waste too much time 

familiarizing themselves with each tool and get confused by the different details: many weak students 

end by giving up.  

In synthesis, the strategy to integrate different tools did not prove to be an effective solution: it would 

be far better to have a single tool, as simple as possible but at the same time comprehensive enough to 

support the explanation and experimentation of a few more aspects than what was possible with PIPPIN. 

The following subsections discuss the most relevant aspects. Additional ones were addressed, but not 

discussed here in detail, such as: 
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 The need to differentiate more clearly the two subsystems CPU and RAM, including 

differentiating with colour coding the internal versus external buses, because it was not always 

evident to students what are the boundaries between CPU and RAM in PIPPIN (Figure 1);  

 Improvements in the usability of the interface: 

o the possibility to insert new instructions in the middle of existing code without having 

to rewrite the portion of code below the insertion, 

o the need to let users control the speed and the amount of details in the animations, 

because PIPPIN is very slow and cumbersome to use when students work with 

algorithms including lengthy cycles. 

2.1. Status word with flags and orthogonal control flow instructions  
PIPPIN does not foresee a status word comprising a set of flags to indicate conditions such as zero, 

negative, even, carry, and so on, which are usually automatically set by the execution of any arithmetic 

or logic operations. In order to control the flow of execution, the PIPPIN instruction set includes an 

unconditional jump instruction, and just a single conditional jump instruction which jumps if the 

accumulator is zero. Supporting instructions include “compare zero” and “compare less” instructions 

to set the accumulator to 1 when their parameter is, respectively, equal or less than zero, and a “not” 

instruction to toggle the accumulator between 1 (actually anything different from 0) and 0. While this 

choice was probably originated by the desire to keep the simulator as simple as possible, avoiding the 

need to introduce the concept of status word / flags, students find it very cumbersome. They find it 

easier to work with real processor emulators, having a status word and an orthogonal set of conditional 

jump instructions. There, the flags are automatically updated to comply with the results of every 

arithmetic or logic operation, and can be exploited by corresponding instructions such as jump on zero, 

jump on not zero, jump on negative, jump on not negative, etc. It was frequently observed that the 

PIPPIN solution, only apparently easier, leads students to go astray with convoluted ad-hoc solutions: 

it does not support students to figure out systematic translation patterns from high level constructs (IF-

THEN-ELSE, WHILE-DO, etc.) to assembler instructions, as shown in Figure 2. 

 
translation ( 

instruction1 
WHILE <condition> DO 

  instruction2 
  instruction3 

ENDWHILE 
instruction4 

) 
 

 
       translation (instruction1) 

WHILE:         translation(<condition>) 
         JMP !condition, ENDWHILE 
         translation (instruction2) 
         translation (instruction3) 
         JMP WHILE 
ENDWHILE: translation (instruction4) 

 

Figure 2 – Sample translation pattern of a WHILE-DO construct 

 

Hence, a fundamental new requirement was to support a status word automatically updated by every 

arithmetic or logic operation, and a set of corresponding orthogonal conditional jump instructions. 

2.2. Labels: proper naming of variables and symbolic identifiers for instruction addresses 
PIPPIN has only a few pre-specified labels that can be used as variable names: W, X, Y, Z, T1-T4. This 

way students, not being permitted to choose meaningful names in line with their intended use 

(semantics) such as SUM, COUNTER, or INDEX, are incentivized to pick up the bad habit of using 

meaningless names for variables. I even noticed students who, after working with PIPPIN, developed 

code in Java using T1-T4 as variable names. Furthermore, the inability to define new labels does not 

help students to grasp the concept that basic “variables” are essentially aliases for memory addresses. 

This is further aggravated by having variables and instructions allocated in separate memory segments, 

implementing a Harvard architecture, rather than the conceptually simpler Von Neumann architecture. 

The possibility to associate labels to memory addresses, makes it possible to use meaningful identifiers 

for variables, plus it can be conveniently used to specify symbolic parameters in control flow 
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instructions too, such as “jump ENDWHILE”, where ENDWHILE is a label indicating the memory 

address where the next instruction to be executed is stored (Figure 2). This greatly facilitates students 

in better mapping high-level code to low-level code. The possibility to dynamically switch from 

symbolic visualization to binary, greatly helps students to understand that labels are just aliases for 

numerical addresses. 

The new requirement was, therefore, to let users define their own labels as aliases of memory addresses, 

to be used both as meaningful variable names as well as parameters in jump instructions. Additionally, 

it was considered convenient to adopt a conceptually simpler Von Neumann architecture rather than a 

Harvard one. 

2.3. Misunderstandings about the sequential interaction between CPU and RAM 
PIPPIN depicts a “Decoder” box, which selects the input channel to the ALU via a multiplexer, and 

determines the specific operation performed by the ALU, according to the content of the instruction 

register as its input (Figure 1). This apparently reasonable simplification creates some confusion among 

the students, who are left wondering how a pure combinatorial network (the decoder) can handle all the 

controls necessary to the system. This made it necessary to provide at least some visual clues that there 

is indeed a subsystem (the control unit) managing these aspects of a sequential nature.  

In particular, the most inquisitive students typically ask how the RAM can figure out that the data have 

arrived, when they consist of all zeros. These students are obviously led to incorrectly believe that the 

RAM knows that there are new data as soon as the data lines are not zero. Students also frequently ask 

how the RAM knows whether it needs to store or retrieve data. Indeed, PIPPIN does show, and properly 

animates, the data and address buses both internally to the CPU and externally towards the RAM, but 

no control line is shown between the CPU and RAM.  

To help eliminate these drawbacks, it was considered necessary to explicitly indicate the (sequential) 

control unit, which includes the decoder, and explicitly show and properly animate the information 

transmitted via the control bus between the CPU and memory. The complexity of this configuration, 

also calls for a more clear differentiation of data, addresses and control buses with colour coding 

techniques. 

3. The new design 
Figure 3 shows a screenshot of the new Educational CPU Visual Simulator, with a sample program 

computing the sum of all numbers from 1 to MAX (which has value 5 in this case), loaded in RAM.  

 

Figure 3 – A screenshot of the new CPU Visual Simulator 
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The image exemplifies how the new design satisfies the requirements discussed. The system now 

models a conceptually simpler Von Neumann architecture, rather than the previous Harvard one: 

instructions and data are therefore stored in the same memory segment. CPU and RAM are now more 

clearly separated and labelled. There is a new Status Word register with “zero” (Z) and “negative” (N) 

flags, which can be conveniently used with the corresponding conditional jump instructions: jump on 

zero, jump on not zero, jump on negative, and jump on not negative. The “Decoder” has been replaced 

by a “Control Unit / Decoder” box, from where additional control lines reach the RAM. This control 

bus is now colour coded and animated, showing the Read or Write requests to the memory with 

appropriate timings. The data and address bus too are now colour coded for easier understanding, and 

obviously animated as they were in PIPPIN. Internal and external buses are also differentiated with 

colour coding.  

There is an extra virtual table where the user can easily define arbitrary labels corresponding to physical 

memory addresses, which can then be used as variable names or as parameters of jump instructions. In 

the sample listing visible in the memory in Figure 3, it is possible to appreciate the use of semantically 

meaningful names for the variables (COUNT, SUM, MAX), as well as the evident pattern of a high-

level WHILE-DO control structure, corresponding to the high-level pseudocode in Figure 4. The 

advantage of this solution can be better appreciated by contrasting Figure 3 with Figure 1, showing the 

coding of the same algorithm in the old simulator. 

 

 

Figure 4 – pseudocode corresponding to the assembler code in Figure 3 

 

The compare instruction (CMP with both immediate and direct addressing) visible in the code in Figure 

3, integrates and extends the previously existing compare zero (CMZ) and compare less (CML) 

instructions. It works exactly like a SUB (subtract) instruction, updating the zero and negative flags, 

but it does not modify the content of the accumulator. Again, the advantage of these extensions can be 

appreciated by contrasting the listings in Figure 3 and Figure 1. Other interventions not visible from 

Figure 3, include replacing the logical operations (AND and NOT) with more commonplace bitwise 

logical operators. 

In addition to the possibility to switch between symbolic and binary visualizations, a few additional 

controls allow the user to dynamically modify the speed of the detailed animations, or even switch them 

off once the basic mechanisms have been mastered and students move to more complex and time 

consuming code.  

4. Open-pedagogy approach 
The new simulator was developed following an Open Pedagogy / OER-enabled pedagogy approach 

(Wiley and Hilton, 2018), where a group of students modified the old simulator, carrying out all the 

necessary design, refactoring and coding, as part of their educational activities in a programming 

project. The author first discussed with them the requirements, then – following an iterative, incremental 

fast prototyping approach – provided them prompt (asynchronous and synchronous) feedback on their 

requests for clarifications and on their prototypes. The objective was to make the result of their effort 

openly available for use and for further improvements by other students and teachers. This approach 

challenged students to address a real-world professional problem, and avoided the need to waste 
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resources on “disposable” traditional assignments. The feedback from the students involved was very 

positive in general: 

 “Absolutely a very satisfying educational experience”. 

More specifically, they appreciated the positive impact on their motivation:  

“I was impressed to experience how solving real problems such as introducing a new feature 

in a broader complex application, had such a positive impact on my motivation 

and my passion for software development”, 

as well as the opportunity to work in team and to learn from professionally-written code: 

 “Working on a team project rather than developing ‘write-and-forget’ software allowed us students 

to simulate a working environment where we had the chance to learn from professionally-written 

code and apply changes that we, as previous users, think would be beneficial to future students.” 

Other students who did not have yet the necessary competences to intervene in the code of the simulator, 

were anyway involved in the project, testing the application and producing supporting documentation. 

The project was also taken as an opportunity to discuss in general the open software movement (Carillo 

and Okoli, 2008), and the potential contribution of open educational resources to the sustainable 

development goals (Lane, 2017). All the students were thrilled by the opportunity to give their 

contribution for the common good. One of them, for example, commented: 

“Working for a purpose and contributing to a wider goal is definitely more rewarding than getting a 

good score on a typical classroom assignment for its own sake” 

These human values, responsibilities and soft skills, are increasingly considered a fundamental 

complement to sheer technical competences, and deserve to be deliberately targeted in the education of 

software engineers (Goyal and Capretz, 2021). 

Finally, it is worthwhile mentioning that all the students involved in the development of the software, 

could find a job in the Information Technology sector even before completing their studies. While a 

precise relationship of cause/effect cannot be claimed, there is some evidence that such an activity was 

an opportunity for these bright minds to blossom. 

5. Conclusions and future activities 
The previous PIPPIN was an excellent educational CPU visual simulator from many points of view, but 

focusing on the translation of arithmetic expressions, lacked a few other functionalities considered 

fundamental by the author. The new simulator builds on the strengths of the previous one, but it supports 

a more direct mapping from high level control structures to assembler patterns, it improves the 

understanding and proper naming of variables, it is more realistic without being more complex, and it 

provides a better user experience. It is now a very flexible tool that can potentially be used by teachers 

and learners in many different ways: to show how a computer works, to understand the key components 

of a CPU and see them alive during execution, to map high-level control structures to assembler 

patterns, to develop and visually run actual programs with a simple but representative language of 16 

assembler instructions, etc. 

Making available the result of these efforts with an open licence, we aspire to contribute to a self-

fuelling cycle which will hopefully continuously improve and extend the resource for future students 

and teachers. For example, the current simulator does not support the explanation and experimentation 

with another important aspect of programming: how to deal with subprograms, including parameters 

passing and local variables. Hence, a desirable additional extension would consist in adding a Stack 

Pointer register with related push and pop operations, as well as instructions to call, and return from, 

subprograms. In order to satisfy the requirement of keeping the simulator as simple as possible, this 

added layer of functionalities could be only optionally exposed under user control, keeping the simulator 

as it is now by default. To further improve its usability, the simulator could be redeveloped from scratch, 

using JavaScript or any language that would allow the simulator to run directly in a browser: this would 

eliminate the current need to download the software and the Java runtime. 
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Certainly, given the very positive experience with the adopted OER-enabled pedagogy approach, the 

author will re-target its future educational activities aiming, whenever possible, to improve existing 

open educational resources, or to develop new ones, at the expense of less motivating “disposable” 

assignments. These activities will be designed to engage students with diverse competences, 

backgrounds, and inclinations. For example, while some students will write advanced software, others 

will develop supporting documentation and test it in peer-to-peer activities, or will localize the material 

to different languages and cultural contexts. 

6. Acknowledgements 
I would like to thank Paul Mulholland for his generous support in writing this paper, Stuart Hirshfield 

for his comments as one of the authors of the original tool, and my students who keenly engaged in this 

project, among them: Nicola Preda, Jonathan Cancelli, Alessandro Belotti, Davide Riva, Giordano 

Cortinovis, Giovanni Ingargiola, Mariapia Cavarretta, Alessandro Suru, and Piero Sileo. Last but not 

least, I would like to thank Cengage, in particular Kevin Kuhnell, for generously granting us the 

permission to modify, reuse, and republish the original applet (for non-commercial, educational 

purposes only). 

7. References 
Carillo, K., & Okoli, C. (2008). The open source movement: a revolution in software development. 

Journal of Computer Information Systems, 49(2), 1-9. 

Decker, R., & Hirshfield, S. (1998). The Analytical Engine: An Introduction to Computer Science Using 

the Internet. PWS Publishing, Boston.  

Decker, R., & Hirshfield, S. (2001). The PIPPIN machine: simulations of language processing. ACM 

Journal of Educational Resources in Computing, 1(4). 

Evangelidis, G., Dagdilelis, V., Satratzemi, M., & Efopoulos, V. (2001). X-compiler: Yet another 

integrated novice programming environment [Paper presentation]. Proceedings IEEE 

International Conference on Advanced Learning Technologies, pp. 166-169. IEEE. 

Goyal, D., & Capretz, L. F. (2021). Promoting and Teaching Responsible Leadership in Software 

Engineering [Paper presentation]. Proceedings of the 32nd Annual Workshop of the 

Psychology of Programming Interest Group (PPIG). 

Higginson, P. (2014). Little Man Computer [Javascript application]. Retrieved 9/4/2021 from: 

https://peterhigginson.co.uk/LMC/. 

Lane, A. (2017). Open Education and the Sustainable Development Goals: Making Change Happen, 

Journal of Learning for Development - JL4D, 4(3), pp. 275-286. 

Miura, Y., Kaneko, K., & Nakagawa, M. (2004). Development of an educational computer system 

simulator equipped with a compilation browser [Paper presentation]. Proc. Int’l Conf. 

Computers in Education, pp. 1067-1071. 

Wiley, D., & Hilton, J. (2018). Defining OER-enabled Pedagogy. International Review of Research in 

Open and Distance Learning, 19(4). DOI: 10.19173/irrodl.v19i4.3601. 

Yurcik, W., & Osborne, H. (2001, December). A crowd of Little Man Computers: Visual computer 

simulator teaching tools [Paper presentation]. Proceedings of the 2001 Winter Simulation 

Conference, Vol. 2, pp. 1632-1639. IEEE. 

 

 

 

 

PPIG 2021 DC www.ppig.org




