
Industry partners’ reflections on undergraduate software engineering students:
An exploratory pilot qualitative study

Bhuvana Gopal
Computer Science and Engineering

University of Nebraska-Lincoln
bhuvana.gopal@unl.edu

Stephen Cooper
Computer Science and Engineering

University of Nebraska-Lincoln
stephen.cooper@unl.edu

Ryan Bockmon
Computer Science and Engineering

University of Nebraska-Lincoln
ryan.bockmon@huskers.unl.edu

Abstract
We conducted an exploratory pilot qualitative study of software engineering industry professionals who
worked closely with sophomore software engineering students in the students’ semester-long software
engineering course project. We traced these industry partners’ reflections, suggestions and advice for
students based on their close observations and individual interactions with the students during the course
project. We used semi-structured interviews, and combined them with researcher memos and reflective
researcher journals. We identify, investigate and discuss these observations in detail, and bring the indus-
try perspective to illuminate the strategies and factors that could help students succeed in the software
industry. We also discuss the potential implications of our findings in the context of undergraduate
software engineering courses.

1. Introduction
Researchers have long been interested in ensuring that computer science education was relevant to in-
dustry needs and identifying areas where newly hired graduates required further preparation to become
productive at their new jobs (Moore & Streib, 1989). Many functional aspects of software development,
including tools, processes and languages have been well-documented and reported through feedback
from the industrial community (Begel & Simon, 2008; Brechner, 2003; Lethbridge, 1998). In addition,
these are a major component of their new jobs (Ostroff & Kozlowski, 1992; Tomayko & Hazzan, 2004).

Studies have focused on what soft skills software engineers need in order to succeed in the industry,
told solely from an industry perspective without involving students (Begel & Simon, 2008; Li, 2016).
Other studies present experiences with and design guidelines for software engineering courses with real
world clients (Bruegge, Dutoit, Kobylinski, & Teubner, 2000; Bruegge, Krusche, & Alperowitz, 2015;
Krusche, Alperowitz, Bruegge, & Wagner, 2014). In both categories of studies, the perspective of the
client / industry professionals regarding students’ work in the course and how it relates to soft skills
required for students to be hired, has often been overlooked and rarely explored.

In this exploratory pilot study, we present the results of a qualitative study where we interviewed indus-
try partners who were closely involved in mentoring sophomore students in a semester-long software
engineering course project. We trace the industry partners’ reflections on what they observed during the
course of the semester, with a focus on what critical soft skills they found important for students to suc-
ceed in an industry environment. We identify the soft skills that outstanding students exhibit. We also
discuss in detail, based on industry sponsor reflections, how the students who lacked these soft skills
could improve on acquiring and honing said skills.

The unique contribution of this work is that our semi-structured interviews were conducted with industry
partners who, as part of their sponsorship of the real world project in the course, worked extensively
with an entire cohort of software engineering students in a continued, sustained manner throughout
the semester. We strive to obtain a specific and contextual understanding of software engineering soft
skills as viewed by expert software engineers. We involved these industry professionals in a controlled

PPIG 2021 www.ppig.org

academic setting, and gleaned valuable insights on student behavior patterns during their first academic
software engineering group course project.

2. Related Work
We review the literature related to our work under two categories: Software engineering courses with
real world projects, and studies focused on software engineering expertise.

2.1. Studies related to software engineering courses with real world projects
Several software engineering project courses with real clients were influenced by the original ideas of
James Tomayko (Tomayko & Hazzan, 2004), in particular with respect to single-project courses with
a real client (Bruegge, Cheng, & Shaw, 1991; Bruegge & Coyne, 1994; Bruegge, 1994). Since then
there have been several combinations of project setups and parameters, replacing structured analysis
with object-oriented modeling (Bruegge, Blythe, Jackson, & Shufelt, 1992), introducing iterative and
collaborative design, adding technical writers (Bruegge, Werner, Uzmack, & Kaufer, 1994), adding use
case modeling (Coyne, Bruegge, Dutoit, & Rothenberger, 1995), introducing rationale management and
issue-based modeling (Dutoit, Bruegge, & Coyne, 1996), and venturing into globally distributed projects
(Bruegge et al., 2000), always with one or more industry clients.

Bruegge et al. (Bruegge et al., 2015) define guidelines for real-world industry projects in classrooms.
They called these projects the 6Rs: always look for a real external client who has a real problem to be
solved with real data; ask students to work together as a real team in a real project to solve the problem by
a real deadline, usually the end of the semester. Vanhanen, Lehtinen and Lassenius (Vanhanen, Lehti-
nen, & Lassenius, 2012) describe a project course simulating in-vivo software development projects.
Gonzales-Morales et al. (González-Morales, De Antonio, & García, 2011) reported the experiences of
students in a software engineering course with a real world client project, with specific emphasis on
developing students’ soft skills. They found that student soft skills can be developed through standalone
instruction, embedded in existing courses and based on support programs, and based on formal and in-
formal activities at university levels. Taylor (Taylor, 2016) conducted a questionnaire based survey of
12 industry professionals in South Africa to determine if soft skills were taught adequately at the univer-
sity level. Seven of the twelve respondents from industry indicated that soft skills were not developed
adequately at university.

The studies cited above present experiences designing and implementing software engineering courses
with various industry partners and clients. However, they do not report on perspectives of the clients
regarding students who participated in those projects.

2.2. Studies related to software engineering expertise and computing education
While there are several studies focused on the importance of industry-relevant topics in the context of
computing education, most lack a direct connection between industry perspectives and software engi-
neering courses. Lethbridge (Lethbridge, 1998) surveyed 168 software professionals about the relevance
of computer science education topics from the ACM Computing Curricula. Kelley’s work examined star
performers, including software engineers at HP and Bell Labs (Kelley, 1999). Kelley conducted a seven
year study evaluating how productive engineers were before and after they had learned star work strate-
gies by going through our productivity improvement program.

Hewner and Guzdial invested what employers in a small game company look for in new graduates
(Hewner & Guzdial, 2010). They interviewed and surveyed over 30 engineers, managers, and artists
about qualifications for recent graduates. The authors identified programming skills as well as people
skills and suggested differences in expectations between new and senior hires. Begel and Simon (Begel
& Simon, 2008) investigated 8 new hires, following them at Microsoft for 4 weeks and examining
their daily tasks. The authors found that new hires need to identify "tasks that have an impact", to be
"persistent", and to collaborate effectively in a "large-scale software team setting". Li and Ko (Li, 2016)
investigated what expert software engineers thought were attributes of great software engineers. They
identified attributes that were important for the engineering of software, and how these attributes related

PPIG 2021 www.ppig.org

to each other.

The above studies show that there is a good body of related work in two important but yet unconnected
topics: a) software engineering courses with industry projects, and b) industry perspectives regarding
recent graduates and new hires. However, there has been a lack of focus on industry perspectives on
students who are currently in the process of learning software engineering. In this pilot study, we seek to
give greater context to our understanding of students’ software engineering expertise, as viewed by in-
dustry professionals, thereby connecting the two perspectives mentioned above. Our pilot study explores
industry perspectives on student soft skills with actual, sustained interaction between industry profes-
sionals and students throughout a semester-long software engineering course project. These industry
sponsors had opportunities to interact closely with every individual student throughout the semester, and
observed and recorded student progress periodically at various checkpoints.

2.3. Research Question
We collected, analyzed and synthesized reflections from industry partners who actively worked with a
cohort of sophomore software engineering students through a semester-long course project. We sought
to remedy the lack of firsthand connection between industry professionals and software engineering
students in prior work by trying to understand:

What were the soft skills that expert software professionals deemed valuable and industry-relevant in
undergraduate software engineering students?

3. Research Methodology
This research project was determined to be exempt by our University’s Institutional Review Board.
To answer the research question, we performed an empirical study with 5 semi-structured interviews
with architect-level, lead and senior software engineers as well as product managers, with extensive
experience in the software industry. We determined that data saturation was achieved based on the
richness of the data we gathered as well as guidelines by Creswell (Creswell & Poth, 2016), indicating
that anywhere between 3-10 participants are typically required for an exploratory qualitative interview
study like ours.

3.1. Context: Course Project
Data for this study were collected from industry partners collaborating with sophomore students taking
a software engineering class in the spring of 2019, in a large R1 university in the USA. This was the
first group software engineering project that students were given the opportunity to work with in their
curricular progression. The course project lasted 15 weeks. The project was proposed by industry
professionals. These industry sponsors worked at the local branch of a large national software company,
specializing in financial services. A total of five focal participants – representing the diversity in roles
within a software engineering team in the industry- participated in individual interviews. Our participant
group had one technical architect, one lead software engineer, two senior software engineers and one
senior product manager.

There were 38 students in the class. They were divided into 7 teams of 4 students each, and 2 teams
consisting of 5 students each. Teams were selected and composed based on various factors including
whether students wanted to assume a technical role or business analysis role, as well as prior internship
experience. Students were provided with an spreadsheet of existing skills in the company and were
asked to develop a web application that would replace a legacy system at the sponsors’ company. This
application would keep track of employees’ past, current and in progress technical and process skills,
and would aid the human resource department in the company identify employee skills appropriate for
projects. The application was required to contain functionality for user authentication, skills classifica-
tion, job requirements posting, skills selection and skills matching, and was required to be hosted on a
cloud platform.

PPIG 2021 www.ppig.org

3.2. Industry Sponsor - Student Interaction
The industry sponsors provided the problem description for the course project and participated in re-
quirements gathering through face to face user interviews. Sponsors then remained involved at every
stage of the project. Sponsor-student interactions included:

• Weekly meetings with each student team.

• Weekly emails clarifying requirements, feature requests etc.

• Continued communication with individual students regarding technology and process related
questions through video calls and emails.

• Acclimatizing student teams to certain aspects of their new hire on-boarding processes including
company rules and policies regarding legal procedures, since the course project involved elements
that involved a process heavy, document rich environment.

• Three formal release meetings during the 15 weeks, each 5 weeks apart, including a large show-
case event at the end of the semester.

• Sponsors assessed and ranked every student based on technical skills, process skills as well as
work ethic throughout the semester. The sponsors recognized standout individuals and teams at
the final showcase event with awards in multiple categories, at the end of the semester-long course
project.

• The primary learning outcomes for the course project were twofold: technical, and process ori-
ented. The technical skills we included were software architecture correctness based on SOLID
principles, database design and implementation (with basic database security), and software test-
ing (unit testing, integration testing, and continuous integration). Soft skill learning outcomes
were based on how well the students did during requirement elicitation, product knowledge, adapt-
ability, communication within the team and with the sponsors, and work ethic.

• After each release meeting, the sponsors met with the instructor and TAs and assessed each student
individually based on a rubric that consisted of both technical and soft skills. These periodic
assessment data allowed sponsors to gain clarity on each student’s individual contribution as well
as their collective team effort.

• The final showcase event involved all students, the instructor, teaching assistants (TAs), the spon-
sors and audience members including other professors and industry professionals. Each student
team presented the highlights of their implementation of the project for 10 minutes.

3.3. Data Collection and Analytical Methods - Interviews, coding and qualitative analysis
We conducted one-on-one semi-structured interviews (Weiss, 1995; Wolcott, 2005) and combined them
with researcher memos, and reflective researcher journals. We maintained and shared field journals
wherein we kept jottings (Emerson, Fretz, & Shaw, 2011) that we turned into expanded field notes. We
analyzed these field notes along with transcribed semi-structured interviews. Our analysis of the data
employed a parallel approach with reflective collaborative check-ins and theming, consistent with the
grounded theory approach in qualitative analysis (Creswell & Poth, 2016).

We began with an initial individual coding of transcripts. We generated and assigned over 200 codes.
These codes were then mapped into different visual configurations based on code topic groupings and
frequency. We conducted iterative chunking and collaborative theming (Anfara Jr, Brown, & Mangione,
2002). The iterative nature of the analysis process helped us to achieve progressive focusing and to
develop conceptual ideas. We used code maps with frequency plots, to guide code grouping and chunk-
ing which supported our collaborative integrative theming and theory development (Corbin & Strauss,
2014). The combination of the two approaches helped us to identify and connect the elements we both
noted among the emerging themes (Olmanson et al., 2016).

PPIG 2021 www.ppig.org

3.4. Reliability and Trustworthiness
We utilized intercoder agreement (Creswell & Poth, 2016) based on the use of multiple coders to ana-
lyze transcript data. Two of the researchers analyzed the individual codes separately to come up with
themes. We report an intercoder agreement of 100% among all themes. To aid in ensuring trustworthi-
ness, participants were invited to give feedback on our interpretations and theory building, commonly
known as Member Checking (Lincoln & Guba, 1985). Participants were offered a descriptive summary
of our themes and theories, and/or of reading the entire paper, and invited to give open-ended feedback
on the extent to which our interpretations and organization resonated with their experiences. All partic-
ipants agreed to give written feedback. This feedback was used to clarify information and confirm our
organization and findings. Our goal with this exercise was to look for agreement / disagreement with
their thoughts expressed in their interviews for this study, and we report no discrepancies.

3.5. Data Organization
In the remainder of this paper, we have presented the experiences and voices of our participants in the
following data sections, organized around the overarching theme of soft skills that the sponsors observed
during their regular and involved interactions with student teams. This way of organizing data was in
line with the way in which education researchers position participant attrition and participation (Ketelhut
& Schifter, 2011). It also aligned with how industry partners spoke about their experiences. In the data
presentations that follow, we forefront participant voices in the text and employ gleanings from student
quotations as subheadings. This is in alignment with the recommendations to present direct quotations
(Foley, 2002). Sections 4.1 through 4.5 represent the themes that emerged from our data analysis.

4. Participant voices and meaning making: Analysis and Discussion
What makes our study unique is the active and close engagement of students with the industry sponsor
throughout the semester. This makes the sponsors uniquely qualified to make comments and suggestions
based on fifteen weeks of close interactions with students. The sponsors’ voices express concrete, actual
issues they found that were far from theoretical or abstract.

4.1. Understand business needs and develop a detailed knowledge of the product
"Typically they don’t yet understand our business or customers with the industry and important that they
recognize how important is to understand the needs of their clients." - Kevin

"It is important to be able to work directly on the business level, and we observe them to see if they have
potential..." - Nancy

"When we have somebody coming in and we recognize very early on that they don’t understand our
business, it becomes hard for them to succeed." - Briana

"Software is just a tool for solving domain problems." - Bob

"Developers need to understand the priority of business tasks...and the priority of technical tasks in
relation to business tasks..." - Kevin

Nancy, Briana, Bob and Kevin all echoed the opinion that the usefulness and hence the professional
success of a junior developer in a software company is directly related to how well they can translate
business requirements into software. Novice software engineers, such as our students, typically do not
have an understanding of what the client needs or of the business needs. Technical tasks, whether it be
feature development, bug fixes or technical debt, need to be correlated with a corresponding business
task. These thoughts are in alignment with previous research by Li and Ko (Li, 2016) who focused
on seasoned software engineers rather than on novices. Li and Ko’s findings indicate that software
engineers who found success often were knowledgeable about their business and technical domains (Li,
2016).

"Develop detailed knowledge of the product from day one." - Nancy

Students attempt to master immense amounts of material in a short amount of time, all the while trying to

PPIG 2021 www.ppig.org

take on tasks that have an impact on the team. This struggle leads to an escalation in stress and anxiety,
not unlike the situation faced by new hires (Begel & Simon, 2008). Nancy puts this in perspective by
setting the focus on the product: a sustained effort to learn the product that the new hire is assigned to
work on, is an important step to success. Our students needed to focus on the product a lot more.

"Skipping over important documentation because it’s boring or time consuming can be a costly mistake.
Take notes." - Cody

"Dig into manuals other source materials for deep understanding before getting started with a new tool
or framework." - Kevin

In a real industry project, our students were learning every day, correcting mistakes, hearing terminology
they might not have known. The key takeaway from these participant quotes is there is a need for students
to constantly learn and improve their domain knowledge as well as their technical skills.

4.2. Communicate clearly and early on
"Successful projects ... very important to have the ability to communicate back and forth around getting
to know the requirements." - Cody

Cody observed that the students who were successful in implementing the project satisfactorily displayed
a strong ability to communicate back and forth with the sponsors, building their knowledge of project
requirements. This theme reflects the research by Storey (Storey, Zagalsky, Figueira Filho, Singer, &
German, 2016), who explain that developers are becoming increasingly social and rely on their social
networks to keep up to date, to find projects to contribute to, and to find others to collaborate with.
The rise of the social programmer (Storey, Singer, Cleary, Figueira Filho, & Zagalsky, 2014) and the
ways that communities of developers make use of increasingly social tools have led to the emergence
of a highly participatory culture of software development. Learning how to effectively communicate
with stakeholders of all levels, from fellow developers, managers, analysts and clients in a professional
manner is key to honing requirement gathering skills. Even more important than initial communication
is the ability to go back and forth on requirements.

"Be transparent with your team every day and communicate clearly." - Bob

"...leverage our team’s shared knowledge." - Kevin

Teamwork skills in software engineering hinge on effective communication (Raibulet & Fontana, 2018).
Kevin and Bob voice opinions that are consistent with findings about teamwork and communication
(Lingard & Berry, 2002). Being able to work effectively in teams is an important learning objective
for software engineering students. As shown by participant voices above, communication is not just
about learning the domain or the product. Transparency and clarity during communication is very valu-
able. Such communication helps share one’s strengths as well as learn from others, enabling students to
leverage and take advantage of the collective knowledge of the team.

"...important to foster an environment where expectations are clear."- Nancy

Effective communication skills also help regroup and practice better boundary setting and problem solv-
ing when things go awry or a boundary is broken in the professional environment. Nancy found that
some students were unclear on what was expected of them within the team. Actual instruction on
and practice opportunities for team based communication skills are necessary in software engineering
classes.

4.3. Ask for help
"Ask for help when you need it." - Briana

There is newcomer socialization literature that addresses how learners fit into professional organizations.
Much of it is relevant to our students, who were simultaneously introduced to several aspects of the
project — writing, testing and reviewing code, release management, data analysis, UI/UX consultation,
code maintenance, building product features, and contributing to technical stack long term goals, to

PPIG 2021 www.ppig.org

name a few. Begel and Simon (Begel & Simon, 2008) find that newcomers are anxious due to their lack
of knowledge about the requirements of their role, of the chain of command, and of knowing who in
the organization that can help them complete their tasks. They found that newcomers hesitate to ask
questions since it reveals to co-workers and managers that one is not knowledgeable.

"When you are stuck, ask someone for help." - Bob

When new developers find themselves in situations that are considerably different from a university
capstone experience (typically project based and developing a small greenfield project), several social
and communication problems arise (Begel & Simon, 2008). Briana and Bob both reiterate the need for
students to ask questions and ask for help when needed. This advice feeds into the continuing narrative
we see in our study about transparent and timely communication.

4.4. Work ethic, judgment, attitude and adaptability
"Avoid the freelancer attitude." - Bob

Bob sheds light on an often overlooked aspect of software engineering: motivation. The "freelancer"
attitude he describes here refers to the lack of initiative, or drive, to push the product forward. In the
software industry, one of the best indicators of curiosity is displaying self motivation.

"Adaptability to the set of... onboarding processes is important to be able to thrive." - Briana

Students that stood out and shone asked for and took on a broad range of tasks. They gauged their
limits and pushed themselves to learn as much as they can as quickly as they can. They did not wait
for work, as evidenced by their burndown charts and continued interaction with the sponsors: finishing
assigned work, checking for quality, and being driven to take on more work got these students noticed
and fostered confidence in their abilities and attitude. In short, attitude mattered.

"Always deliver a high quality UX. Products live and die on their UX. Simply meeting acceptance
criteria is not enough." - Cody

"Do not skip testing." - Kevin

Cody’s statement could be extended beyond the User Experience (UX) paradigm, but in essence, it
explains how important UX and software quality are to the success of a software product. Two of the
nine teams failed to focus on testing. One lost focus on the UI/UX. Students and potential new hires need
to remember that it is simply not sufficient to develop to specifications. Software testing is important,
and a necessary skill to help learn the nuances of the product being built.

"Know when to take on technical debt and when to pay it off." - Kevin

Technical debt (also known as design debt or code debt, but can be also related to other tech-
nical endeavors) is a concept in software development that reflects the implied cost of additional
rework caused by choosing an easy (limited) solution now instead of using a better approach
that would take longer (The Engineer’s Complete Guide to Technical Debt, year = 2020, url =
https://www.stepsize.com/blog/complete-guide-to-technical-debt, lastchecked = 05.14.2021, n.d.). An
often overlooked aspect of software engineering instruction, judgment is an important factor is helping
software engineering students and potential new hires succeed in the industry. Kevin observed, based
on periodic scrutiny of the teams’ product and release backlogs, that some teams took on technical debt
tasks too early, or too late, indicating that student judgment on timing these tasks needed honing.

4.5. Curiosity and continued learning
"Welcome the opportunity to work on something new and challenging." - Nancy

Every project that software engineers work on has the potential to be different: different frameworks,
different setup, different goals, different team members, different business needs, etc. Being able to
learn and adapt to new and challenging environments is a skill that sets apart students from one another.
Nancy noticed that the students who she and her colleagues identified as the strongest welcomed new
challenges, and delivered "nice-to-have" features in addition to those in the "must-have" list.

PPIG 2021 www.ppig.org

"Stay sharp and current." - Briana

"....attend collaborative meetups." - Cody

Being curious leads to creative solutions, new interests and best practices. Software engineering is
a dynamic discipline with continuous technological and process improvements to suit business needs.
Students who wish to succeed in industry need to learn how to stay up to date with emerging technologies
and processes.

Our overall findings of this section complement the work by Begel and Simon (Begel & Simon, 2008)
in illuminating what soft skills to focus on while working on real world software engineering projects,
and how to succeed as a new hire in a company. Our findings also reiterate and expand upon those by
Taylor (Taylor, 2016) who found that communication, flexibility, self management and teamwork were
rated highest by the industry professionals in their study.

5. Threats to validity
As with any empirical study, there are various internal and external threats to validity that our results are
subject to. While our analysis was systematic, other researchers may glean different themes, attributes
and definitions than ours from the same raw data. Our sampling method included 5 interviews (2 women,
3 men) that yielded rich insights. Typically, for data saturation in exploratory qualitative interview
such as ours, the recommendation is 3-10 participants (Creswell & Poth, 2016). However, it was a
small sample in a single location in the Midwest of the US, and this could lead to under-representation
of minorities. Nonetheless, as we interviewed sponsors from a successful financial company whose
software was widely used by the public, we deem our findings to be valuable and relevant.

6. Conclusion and Future Work
Software engineering in the industry requires an ability to deftly combine skills pertaining to coding,
business analysis, team work and communication, and staying current with emerging technologies at the
same time. In our study, our participants were able to explain what they observed when students lacked
certain skills related to software engineering.

The contribution of this exploratory pilot study is that we have gleaned valuable, industry-relevant in-
formation from one-on-one interviews with industry professionals based on their semester-long, close
interactions with students. This gives them a unique perspective on each individual student’s progress
throughout the course project. Our key result themes indicate that outstanding students:

• Worked hard to gain a clear and strong understanding of what business needs their software aims to
fulfill. They strive to obtain detailed knowledge about the product they are asked to help develop.

• Were curious, and exhibit the drive to stay current and sharp with technology and process ad-
vancements. They are adaptable to onboarding requirements.

• Asked for help when they are stuck.

• Displayed a strong work ethic, and avoid the freelancer attitude.

• Were transparent with their team and stakeholders, and communicate with clarity in a timely
manner.

• Were adaptable and flexible with onboarding processes.

There is much scope for future work in this domain. In future work, we anticipate exploring what
the discovery of these soft skills means for project based software engineering education. Now that
we have identified valuable soft skills that students need to learn during their coursework in software
engineering, how can we facilitate student learning of these skills? The results from this study offer a
good starting point to examine, revise and restructure learning outcomes and assessment mechanisms for

PPIG 2021 www.ppig.org

project based software engineering courses, to better focus on soft skills deemed valuable by industry.
We would also like to expand this exploratory pilot study across different sponsor and student samples
from different courses and industry domains. In addition, based on the results of this study, we intend
to investigate if process oriented pedagogies such as Process Oriented Guided Inquiry-Based Learning
(POGIL) (Kussmaul, 2014) can help improve learning outcomes concerning the soft skills students need
to succeed in the software industry.

7. References
Anfara Jr, V. A., Brown, K. M., & Mangione, T. L. (2002). Qualitative analysis on stage: Making the

research process more public. Educational researcher, 31(7), 28–38.
Begel, A., & Simon, B. (2008). Novice software developers, all over again. In Proceedings of

the fourth international workshop on computing education research (p. 3–14). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
1404520.1404522 doi: 10.1145/1404520.1404522

Brechner, E. (2003). Things they would not teach me of in college: what microsoft developers learn
later. In Companion of the 18th annual acm sigplan conference on object-oriented programming,
systems, languages, and applications (pp. 134–136).

Bruegge, B. (1994). From toy system to real system development: Improvements in software engi-
neering education. In Software engineering im unterricht der hochschulen seuh’94 (pp. 62–72).
Springer.

Bruegge, B., Blythe, J., Jackson, J., & Shufelt, J. (1992). Object-oriented system modeling with omt.
ACM SIGPLAN Notices, 27(10), 359–376.

Bruegge, B., Cheng, J., & Shaw, M. (1991). A software engineering project course with a real client
(Tech. Rep.). Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst.

Bruegge, B., & Coyne, R. F. (1994). Teaching iterative and collaborative design: Lessons and directions.
In Conference on software engineering education (pp. 411–427).

Bruegge, B., Dutoit, A. H., Kobylinski, R., & Teubner, G. (2000). Transatlantic project courses in a
university environment. In Proceedings seventh asia-pacific software engeering conference. apsec
2000 (pp. 30–37).

Bruegge, B., Krusche, S., & Alperowitz, L. (2015). Software engineering project courses with industrial
clients. ACM Transactions on Computing Education (TOCE), 15(4), 1–31.

Bruegge, B., Werner, M., Uzmack, J., & Kaufer, D. (1994). Fostering co-development between software
engineers and technical writers. In Proceedings software education conference (srig-et’94) (pp.
4–11).

Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for devel-
oping grounded theory. Sage publications.

Coyne, R. F., Bruegge, B., Dutoit, A. H., & Rothenberger, D. (1995). Teaching more comprehensive
model-based software engineering: experience with objectory’s use case approach. In Conference
on software engineering education (pp. 339–374).

Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five
approaches. Sage publications.

Dutoit, A. H., Bruegge, B., & Coyne, R. F. (1996). Using an issue-based model in a team-based
software engineering course. In Proceedings 1996 international conference software engineering:
Education and practice (pp. 130–137).

Emerson, R. M., Fretz, R. I., & Shaw, L. L. (2011). Writing ethnographic fieldnotes. University of
Chicago Press.

The Engineer’s Complete Guide to Technical Debt, year = 2020, url =
https://www.stepsize.com/blog/complete-guide-to-technical-debt, lastchecked = 05.14.2021.
(n.d.).

Foley, D. E. (2002). Critical ethnography: The reflexive turn. International Journal of Qualitative
Studies in Education, 15(4), 469–490.

PPIG 2021 www.ppig.org

González-Morales, D., De Antonio, L. M. M., & García, J. L. R. (2011). Teaching “soft” skills in
software engineering. In 2011 ieee global engineering education conference (educon) (pp. 630–
637).

Hewner, M., & Guzdial, M. (2010). What game developers look for in a new graduate: interviews and
surveys at one game company. In Proceedings of the 41st acm technical symposium on computer
science education (pp. 275–279).

Kelley, R. E. (1999). How to be a star engineer. Ieee speCtruM, 36(10), 51–58.
Ketelhut, D. J., & Schifter, C. C. (2011). Teachers and game-based learning: Improving understanding

of how to increase efficacy of adoption. Computers & Education, 56(2), 539–546.
Krusche, S., Alperowitz, L., Bruegge, B., & Wagner, M. O. (2014). Rugby: an agile process model based

on continuous delivery. In Proceedings of the 1st international workshop on rapid continuous
software engineering (pp. 42–50).

Kussmaul, C. (2014). Guiding students to discover concepts and develop process skills with pogil. In
Proceedings of the 15th annual conference on information technology education (pp. 159–160).

Lethbridge, T. C. (1998). A survey of the relevance of computer science and software engineering
education. In Proceedings 11th conference on software engineering education (pp. 56–66).

Li, P. L. (2016). What makes a great software engineer (Unpublished doctoral dissertation).
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. newberry park. Ca: Sage.
Lingard, R., & Berry, E. (2002). Teaching teamwork skills in software engineering based on an under-

standing of factors affecting group performance. In 32nd annual frontiers in education (Vol. 3,
pp. S3G–S3G).

Moore, F. L., & Streib, J. T. (1989). Identifying the gaps between education and training. In Proceedings
of the twentieth sigcse technical symposium on computer science education (pp. 52–55).

Olmanson, J., Kennett, K., Magnifico, A., McCarthey, S., Searsmith, D., Cope, B., & Kalantzis, M.
(2016). Visualizing revision: Leveraging student-generated between-draft diagramming data in
support of academic writing development. Technology, Knowledge and Learning, 21(1), 99–123.

Ostroff, C., & Kozlowski, S. W. (1992). Organizational socialization as a learning process: The role of
information acquisition. Personnel psychology, 45(4), 849–874.

Raibulet, C., & Fontana, F. A. (2018). Collaborative and teamwork software development in an under-
graduate software engineering course. Journal of Systems and Software, 144, 409–422.

Storey, M.-A., Singer, L., Cleary, B., Figueira Filho, F., & Zagalsky, A. (2014). The (r) evolution of
social media in software engineering. In Future of software engineering proceedings (pp. 100–
116).

Storey, M.-A., Zagalsky, A., Figueira Filho, F., Singer, L., & German, D. M. (2016). How social and
communication channels shape and challenge a participatory culture in software development.
IEEE Transactions on Software Engineering, 43(2), 185–204.

Taylor, E. (2016). Investigating the perception of stakeholders on soft skills development of students:
Evidence from south africa. Interdisciplinary journal of e-skills and lifelong learning, 12(1),
1–18.

Tomayko, J. E., & Hazzan, O. (2004). Human aspects of software engineering. Firewall Media.
Vanhanen, J., Lehtinen, T. O., & Lassenius, C. (2012). Teaching real-world software engineering

through a capstone project course with industrial customers. In 2012 first international workshop
on software engineering education based on real-world experiences (edurex) (pp. 29–32).

Weiss, R. S. (1995). Learning from strangers: The art and method of qualitative interview studies.
Simon and Schuster.

Wolcott, H. (2005). The art of fieldwork. walnut creek, calif. AltaMira Press/A Division of Rowman &
Littlefield Publishers, Inc.

PPIG 2021 www.ppig.org

