
Progger: Programming by Errors (Work In Progress)

Alan T. McCabe
Lund University

alan.mccabe@cs.lth.se

Emma Söderberg
Lund University

emma.soderberg@cs.lth.se

Luke Church
Lund University / University of

Cambridge
luke@church.name

Abstract
This paper describes a work in progress implementation of a programming tool that puts errors and
their provenance at the forefront of the interaction between a developer and a compiler. We discuss the
motivation for such a tool, it’s design and implementation, and reflect upon avenues for further
research which it can facilitate.

Keywords
Error messages, Compilers, Conversations, Developer Tools, Usability, Communication breakdown,
Conversational repair

1. Introduction
For novice programmers, compiler errors are a common occurrence as they work through the process
of familiarising themselves with the syntax of a programming language. They write some code,
execute it, and any errors that result can then be used to inform their next steps. Sometimes, however,
unclear error messages can leave them at a loss as to how to proceed or, even worse, lead them down
a wrong path altogether if the actual source of the error ends up being in a different location in the
code from the line that the compiler flagged as problematic (Becker et al., 2019). In this case, the
respective understanding of developer and compiler are no longer in alignment (Henderson & Harris,
2011) - looking at this interaction through the lens of a conversation (Dubberly & Pangaro, 2009), it
can be said that a communication breakdown (Beneteau et al., 2019) has occurred. This conceptual
approach is explored at length in (Church et al., 2021), which proposes a theoretical ‘tool for thinking
with’, this paper explores a possible application of that framework.

In the event of a breakdown in
understanding between two human
participants, the focus would shift
towards a meta-conversation about the
conversation itself (Dubberly &
Pangaro, 2009). The participants
would attempt to “repair” the
breakdown, bringing all parties back
into alignment before returning to the
primary topic. A compiler, however, is
much less forgiving. If a developer
fails to understand a statement from the
compiler, the onus is on the developer
to seek out clarification and decipher
exactly what is meant, with nothing
from the compiler by way of
assistance.

As an example, if we consider the Java code in Figure 1, it has a small method (example) using
two variables; one field (y) declared in the class and one local variable (x) declared in the method.

PPIG 2021 www.ppig.org

The local variable is “possibly assigned” before it is used in the return statement (on line 14). If we
know that the field (y) is given a default value of zero we can see that the condition in the if

statement will always be true, and consequently the local variable will be assigned.
However, the compiler (the little blue robot-figure operating in the blue box) has a different view,

where it considers the declaration and uses of the local variable (indicated with dashed lines) to see if
it is assigned before it is used. When considering this, the compiler can not determine the value of the
condition1 (the black box with the question mark), and as a consequence it reports an error where the
local variable is used. If we let the javac compile process the code example via its command line
interface, we get the following result, providing a message and pointing to a position:

This is where the interaction with javac ends - we get no more assistance and the burden of
determining that the fix may be to assign a value declared on line 8 is on us. If we consider this as a
communication breakdown, how can we provide assistance for repair?

With this in mind, we have developed a prototype for the exploration of the provenance of errors
that extracts extra information from the compiler about the source of an error and presents it to the
user. Given this relative wealth of information, we will discuss how it can be used to repair a
breakdown in understanding and ask the question “how would the interaction look if we explicitly
designed for mitigation of breakdowns in the conversational alignment between the developer and the
compiler, as well as support for repair?” - In other words, can we design a tool that enables the user to
engage in “programming by errors”?

2. Background

For ease of access to additional information within the compiler, we decided to build a small
extension of a compiler based on a reference attributed grammar (RAG). An explanation of this
formalism will be provided in the following section, as well as the motivation behind our selection of
a RAG-based compiler as a basis for the Progger system.

2.1 Attribute Grammars
The formalism of attribute grammars (AGs), as introduced in (Knuth, 1968), is a means of extending
a context-free grammar to allow for a declarative description of context-sensitive elements of the
grammar. This is achieved by attaching attributes to non-terminal nodes of the abstract syntax tree
with rules for their evaluation, with attributes categorised as either synthesised or inherited depending
on whether they are used to propagate information upwards or downwards through the tree
respectively. For example, consider a simple context-free grammar describing addition and
subtraction expressions. The notation used here is a simplified form of the JastAdd notation used to
specify the abstract syntax tree (AST) model. Some notation from the concrete grammar is also used
for clarity, such as the explicit inclusion of ‘+’ and ‘-’ tokens which would normally be omitted from
the abstract grammar. Certain object-oriented concepts are used, such as abstract classes and the use
of inheritance, denoted here in the form <Subclass>: <Superclass>.

abstract Expr
Add: Expr → Left:Expr + Right:Expr

1 The compiler is performing a static analysis without running the code. One consequence is that it has little
knowledge about values of variables and results of expressions. It could possibly infer the result of the condition
in the example code but this kind of analysis is typically not done by compilers for the Java language.

PPIG 2021 www.ppig.org

Sub: Expr → Left:Expr - Right:Expr
Numeral: Expr → ℕ

Where ℕ is the set of all natural numbers, ℕ = {0, 1, 2, 3, 4, …}. To represent the numerical value of
an expression, a synthesised attribute (val) may be attached to each of the Expr nodes and a
corresponding equation defined for each production in the grammar as follows:

syn int Expr.value();2

eq Add.value() = getLeft().value() + getRight().value();
eq Sub.value() = getLeft().value() - getRight().value();
eq Numeral.value() = ℕ;

Given the input string “1+2-3” within this grammar, the syntax tree in Figure 2 may be derived with
the appropriate attribute values as defined by these equations.

The synthesised attribute, value, can be
seen to be calculated based on information
provided by the child of the node it is attached
to, thereby propagating information up the
tree. The evaluation of attributes occurs
on-demand, therefore the values of the child
nodes would not be calculated until the result
is required by the parent node. It is also of
interest to propagate information downwards
through the tree, however. This is achieved
using inherited attributes, where the equation
is defined in an ancestor of the node
containing the attribute. This will be explained
in greater detail in the next section.

2.2 Reference Attribute Grammars
The AG formalism has been further extended by the introduction of reference attributed grammars
(RAGs) as described in (Hedin, 2000). The primary addition in this extension is to facilitate the
referencing of objects by attributes, thereby allowing a reference attribute to form a link between one
node of the tree and another node at an arbitrary distance from it. This allows for multiple benefits,
such as the superposition of graphs over chains of use-def relationships or inheritance structures.

Consider an extension to the previous example that allows for the assignment of values to variables
and a predefined print function. This can be achieved by introducing the concept of a block (Block)
composed of a list of statements (Stmt). A statement may be a variable declaration (Decl), an
assignment of a value to a previously declared variable (Assign), a call to print the result of an
expression (Print), or an expression (Expr). We also introduce a Use node to represent calling a
variable by reference, and let ID correspond to a string of arbitrary length:

abstract Stmt
Block: Stmt → Stmt*
Decl: Stmt → ID Expr
Assign: Stmt → ID Expr
Print: Stmt → Expr

abstract Expr
Add: Expr → Left:Expr Right:Expr
Sub: Expr → Left:Expr Right:Expr
Use: Expr → ID
Numeral: Expr → ℕ

2 The notation presented here is a simplified form of the JastAdd syntax. A detailed description can be found in
the JastAdd reference manual: https://jastadd.cs.lth.se/web/documentation/reference-manual.php

PPIG 2021 www.ppig.org

In order to associate variable uses with their declarations, we must introduce several new attributes.
All Stmt nodes will require an attribute (declares), that, given an ID as a parameter, will return
true if evaluated to a Decl statement with a matching ID node, or false for all other Stmt nodes:

syn boolean Stmt.declares(String id) = false;
eq Decl.declares(String id) = getID().equals(id);

Another equation may now be defined on Use nodes, decl, that can be used to calculate a reference to
the variable declaration and thereby obtain it’s value. This may be accomplished by the use of an
inherited attribute, lookup, which we can use to implement the lookup pattern which was previously
defined for JastAdd-style RAGs (Fors et al., 2020). This attribute is attached to the Use node,
however its equation is defined further up the tree, within the Block node:

eq Use.value() = decl().val();
syn Decl Use.decl() = lookup(getID());
inh Decl Use.lookup(String id);
inh Decl Block.lookup(String id);
eq Block.getStmt(int i).lookup(String id) = {

for (Stmt s : getStmts()) {
if (s.declares(id)) {

return s;
}

}
return super.lookup(id);

}3

As several attributes are dependent upon each other in this example, the dynamic dependencies must
be calculated on-demand when a reference attribute is evaluated. An evaluation stack is used during
this calculation which can effectively be compared to a call stack, where an attribute pushed on to the
top of the stack can be understood as having been called by the attribute immediately below it.

Consider an input to the compiler in the form of a small program and the resulting syntax tree as
shown in Figure 3, with additional information included to highlight dependencies. In the interest of
clarity only the dependencies for a single attribute are presented: those which can be used to return the
matching declaration for the last reference to “a” in the line: “print b + a;”.

3 As can be seen, this code snippet includes some imperative code. This is considered to be valid within the
JastAdd system, as long as there are no externally visible side-effects.

PPIG 2021 www.ppig.org

Figure 3. Extended abstract syntax tree with arrows showing dependencies.4

The ability of inherited attributes to propagate information down the tree is highlighted here. The ID
value “a” is first propagated up through the Block nodes via the lookup(String id) attribute
until a local declaration can be found. A reference to the Decl node is then passed back down the tree
and assigned to the decl() attribute in the Use node. The call stack for this Use.decl attribute
instance is presented in Figure 4, where the stack is shown at points in the evaluation immediately
preceding the top-most object on the stack being popped. As the computation and evaluation of
attributes can be expensive in a large syntax tree, caching has also been introduced in order to
increase the efficiency of subsequent calls to an already accessed attribute. It assumed for this
example that none of the attributes on the evaluation stack have been previously cached.

Figure 4. Evaluation stack

Reference attributes can be used for various semantic analyses, for instance, in the evaluation of
compile time errors. RAGs have also been extended with several additional concepts, for instance,
that of the collection attribute (Magnusson et al., 2009). These are attributes where the value is

4 The subscript numerals 1, 2, and 3 on the Block nodes in this diagram correspond to the level of
nesting that the respective Block occurs at. Subscripts a and b on Decl and Use nodes refer to the
variable name that is declared or used.

PPIG 2021 www.ppig.org

defined by a combination of contributions from other nodes within the tree. Other extensions include
circular attributes, rewrites, higher-order attributes, and incremental evaluation, however as they are
not pertinent to this paper they will not be discussed here.

2.3 The JastAdd System
The efficacy of RAGs has been demonstrated by their implementation in the meta-compilation system
JastAdd (Hedin & Magnusson, 2003) and the subsequent implementation of, for instance, the
extensible Java compiler, ExtendJ (Ekman & Hedin, 2007), built upon the JastAdd system. Due to the
extensibility and modularity of JastAdd, the resultant implementation of the Java specification in
ExtendJ provides a convenient entry point to attribute evaluation within a full Java compiler, and is
therefore a valuable tool when seeking greater insight into error provenance.

The JastAdd system supports aspect-oriented programming (Kiczales et al., 1997), which is
reflected in the organisation of the Java specification implementation within ExtendJ. Extension of
existing classes within the AST, and the addition of new ones, is supported by the use of inter-type
declarations in JastAdd aspect modules, defined in files using the .jrag extension. Aspects use a
Java-like syntax to allow for additional classes to be defined within the AST while attributes weave
additional code into existing generated class files. Aspects are used to group common behaviour
together under an easily recognisable descriptor - for example, type checking behaviour within the
ExtendJ compiler is grouped together in the TypeCheck.jrag aspect file.

The tracing system within JastAdd, first introduced in (Söderberg & Hedin, 2011), provides trace
events generated at various stages of compilation to perform this attribute tracking. For the previous
example in Figure 4, this may be illustrated as in Figure 5 by including the trace events generated at
each stage of the stack operations. A TOKEN_READ event is first generated upon scanning of the
token. Subsequently, as attribute evaluation occurs, a COMPUTE_BEGIN is generated as each new
attribute is placed on the stack. Once the reference is calculated, the attributes are popped one by one,
generating a COMPUTE_END event as they are to signify that a value has been obtained. At any
point in the evaluation an attribute that has been pre-calculated may have it’s value read from the
cache, at which point a CACHE_READ event would be triggered instead.

Figure 5. Evaluation stack with trace events

One benefit of using a RAG-based compiler to build the prototype is the aspect-oriented nature of
JastAdd, which groups computations by behaviour, the utility of which we will elaborate on in Section
3.3. Another benefit is the evaluation and subsequent tracing mechanism that is available. By being
able to hook into the evaluation stack, this allows us to present to the user not only an error message,
as in a conventional system, but also a tree structure showing exactly where in the code the compiler
was looking when the error occurred.

PPIG 2021 www.ppig.org

3. The Progger Prototype

In this section, we will explain how we designed the prototype. A literal application of the
conversational metaphor in this design would result in an interaction that was similar to a
conversational agent, whilst interesting as a possibility this would create a very significant
implementation challenge to avoid uncanny valley effects (Mori et al., 2012). Instead we aim here to
implicitly support the conversational nature of the interaction outlined in the breakdown and repair
properties in Section 1. We present the prototype in terms of its client-server architecture (Section
3.1), how we extract error details in the server (Section 3.2), and then how we bring out the details
from the compiler to the user in the client (Section 3.3).

3.1 Architecture
To facilitate experimentation in conversational compilers, we elected to build an architecture based on
the client-server model, illustrated in Figure 6. The client is a simple web application with a file
picker which allows the user to select a .java file, which is then rendered in the client with some
simple syntax highlighting to emphasise Java keywords. When the “Compile” button is clicked, the
file is uploaded to the compiler service via REST which then compiles the source code and returns a
data structure with key information accessed during compilation and the corresponding token
locations in the code.

Figure 6: Architecture overview of the Progger prototype.

3.2 The Progger Compiler Service
To extract and present a greater amount of information with regards to error provenance, it is
necessary to establish an understanding of what information the compiler was making use of when it
encountered the error. For this purpose, a Java compiler based on RAGs was selected. Where a
non-RAG based compiler may give us access to just the call stack, RAG based compilers make use of
declaratively defined objects called attributes to perform computation, and consequently can allow
access to the attribute evaluation stack. This presents a finer level of information about the
computation, with dependencies between units of computation being exposed.

In the RAG-based compiler that we have selected, these computation units are also grouped into
aspects, which are clearly labelled collections of attributes and behaviour. This allows us to link
operations on the attribute evaluation stack to logically named stages of the compilation process, and
thus to map these operations to conversational statements that allow for a greater degree of
exploration by users regardless of their level of knowledge about compilers. The following sections
will give an overview of RAGs, as well as the attribute grammars that act as their foundation.

3.2.1 Extracting Compiler Trace Details
During development of the prototype, the tracing system in JastAdd was updated to contain additional
aspect information within the trace events, as well as TOKEN_READ and several events related to
the evaluation of collection contributions. As attributes are defined within aspects, COMPUTE events
generated by the tracer are now able to report the name of the aspect from which the attribute that is

PPIG 2021 www.ppig.org

being computed originates. This allows us to link more generic attribute names to the context in which
they are being accessed - any attribute defined in the TypeCheck aspect, for example, may be easily
inferred to have been accessed by the compiler when checking the type of an object.

A key component of the prototype described in this paper is the ability to “hook into” a compiler in
order to extract more information relating to errors. Specifically, within ExtendJ a “problems”
collection attribute is defined in the root node of each compilation unit, which is typically a
representation of the code within a Java file. Upon failure of some check in the compiler, a Problem
object is created and contributed to the problems collection containing information such as an error
message, location where the error was discovered, severity etc. By tracking the attributes that are
evaluated in the calculation of a contribution to the problems collection, it becomes possible to link an
error to various contributing locations in the code.

The prototype achieves this by listening for events triggered at the beginning of a collection
contribution check, signified by a CONTRIBUTION_CHECK_BEGIN trace event. For example, a
node in the tree may contribute a Problem to the problems collection in the event that a return type
does not match the method signature. Upon reaching the return statement in a method block, the
compiler will begin evaluating this contribution and trigger a trace event signifying so. Once a
contribution check begins, we start constructing a tree of the attributes that the contribution evaluation
is dependent upon. To do this, any other attribute that is calculated or that has it’s cached value
accessed in the process of evaluation is stored in an internal data structure. At the conclusion of the
contribution check a different event is generated depending on whether or not the contribution
condition is matched. In the event of a match, the dependency tree is saved and returned to the
application once compilation is complete, otherwise it is simply discarded.

3.2.2 Service REST API
Progger makes use of a simple REST service built upon the lightweight Spark framework5 to convey
the results of a compilation back to the client. This consists of an array of any errors encountered by
the compiler mapped to a JSON format as follows:

{

"message": [compiler error message],
"fileName": [file name],
"location": [line number],
"severity": [warning/error],
"rootNode": [originating attribute node]

}

The root serves as the starting point for the attribute dependency tree, with each node containing the
following information:

{

"name": [attribute name],
"aspect": [name of aspect the attribute is associated with],
"location": [Token locations associated with the attribute],
"children": [array of child attribute nodes]

}

The location data of attributes within the dependency tree can be used to render annotations over the
source code within the development environment. These annotations show us exactly where the
compiler was “looking”, in terms of the lexical tokens in relation to the AST nodes hosting the
attribute instance, when it encountered the error (illustrated in Figure 7) - effectively a visual
representation of the code in a manner similar to that seen by the compiler robot in Figure 1.

5 https://sparkjava.com/

PPIG 2021 www.ppig.org

Figure 7. Example JSON excerpts of an attribute error tree. The coloured lines indicate which
sections of the source code each attribute refers to.

3.3 The Progger Client
The Progger client is implemented as a web UI. Appendix A, Figure 8 shows a screenshot with the
example presented in Figure 1. Again we have the error from earlier (yet with a different formulation
of the error message due to a different Java compiler being used “under the hood”), but now we also
have a “Tell me more about this” button. If this button is clicked, we can get more details about what
the compiler was considering (approximately the dashed blue arrows in Figure 1) in Appendix A,
Figure 9.

Here, we are seeing that the compiler considered several aspects of the code while trying to
investigate whether the local variable had been assigned before its first use
(definiteAssignmentProblems). As we hover over the “error details” to the right, the code
related to the aspect being considered is highlighted in the code to the left, for instance, at one point
(marked by the cursor) the compiler considered whether the local variable declaration was a field
(isField).

The error nodes provided at the top level of the JSON output from the compiler service act as a
starting point for the visualisation of a conversational interaction with the compiler. The error is
rendered to the right of the code in an information box, with the line of code corresponding to the
error underlined in red when the error element is moused over. At first glance, the meaning of the
error may be unclear to an inexperienced programmer, and it may be useful for them to be able to ask
a question of the compiler to help align their mental model - for example “What were you doing when
you encountered this problem?”. To facilitate this discussion, the client provides an option on the error
element to “Tell me more about this” (Figure 8).

On click, the first layer of the attribute tree is expanded and displayed to the user (Figure 9). In
keeping with the conversational tone, the aspect information that is supported in JastAdd-style RAGs
are used to more clearly explain what the compiler was doing at each stage of the evaluation process.
Since aspects are used to group attributes by common functionality, we have mapped each aspect
name to a conversational statement giving a general overview of the purpose of that aspect. In this
example, the compiler encountered a problem while checking the definite assignment of x + y to
the return value of the method. This problem was flagged in the DefiniteAssignment aspect,
which is mapped to a clarifying statement in the client: “I was checking if this definite assignment is
valid”, shown in Appendix A, Figure 10. This “error details box” can then be clicked for more details,
at which time additional information from the trace is displayed (Figure 9) and can be explored by
further expansion of the error details boxes.

PPIG 2021 www.ppig.org

With this presentation of the error details, the interaction continues after the error is presented.
When the error does not make sense (conversation breaks down) the developer can ask for more
information (“tell me more about this”) which then results in a display of a list of the steps the
compiler took to detect the error. The user can follow the “train of thought” of the compiler by
following along the list of error details and hover over the boxes to see what parts of the code that
were considered, while also considering the names of the aspect and attribute of the computational
unit.

Appendix A, Figure 11 includes the end of the error details from Figure 8 along with the code
highlighting connected to those error detail boxes. As the user gradually hovers over the list of error
details (all concerned with “definite assignment”) from top to bottom, the “return statement” is
highlighted (where the error is marked), then the if statement, the assignment, and then the condition.
The final box then highlights the declaration. The compiler is trying to determine whether the “x”
variable has been assigned. With the highlighting we can follow along to the areas in the code (away
from the error location) that it had to consider.

4. Discussion and Implications for Future Work

This paper outlines a strategy for making the interaction around errors a foreground part of the
experience of a developer. In doing so it practically demonstrates the work that is needed in order to
create an environment with a closer alignment between a developer and a compiler. This work
proceeds on two fronts. Firstly, the internal processes and data structures of the compiler have to be
exposed, and, where possible, mappings created on top of them that are likely to be closer to the
model by which the developer thinks of what is happening in the compiler. Secondly, the user
interface by which the developer interacts has to be brought closer to the compiler, with additional
elements added to enable requests for additional information in particular cases. This engineering
work to ‘meet in the middle’ needs to be built on top of an architecture that can support allocation of
different pieces of work to the various components in the system. Doing this results in a more
conversation-like interaction with the compiler shifting away from an idempotent input/output model,
to a question/answer model, and in doing so highlights a number of possibilities for future work.

In order to empirically characterise the effects of this to a more conversational interaction mode it
will be necessary to support a wider range of features within Progger, for example saving changes,
introducing syntax highlighting and multiple files in order to create a more representative interaction
context. More significantly, there are further refinements that can be made to the presentation of the
errors themselves, hiding extraneous information and supporting the developer using Progger by
focussing on the conversational interaction. Once these improvements have been completed we
propose to study in a representative commercial context how developers go about doing their work
when the focus is shifted to a conversational interaction around error messages.

The tool in its current state may also lend itself well to an educational context. While the
information presented in the attribute tree view may not necessarily solve a problem by itself, it will
point the user towards relevant places in the code - potentially highlighting to novice programmers the
most relevant areas for review when trying to resolve an error. In this way, Progger acts not as a
problem-solving tool, in that it does not actively suggest fixes, but rather as one that aids our
understanding and facilitates learning.

Acknowledgements

This work is supported by the Swedish Foundation for Strategic Research under Grant No.
FFL18-0231 and the Swedish Research Council under Grant No. 2019- 05658.

PPIG 2021 www.ppig.org

References

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B., Kamil, A., Karkare,
A., McDonald, C., Osera, P., Pearce, J. L., & Prather, J. (2019). Compiler Error Messages Considered
Unhelpful: The Landscape of Text-Based Programming Error Message Research. In Proceedings of
the Working Group Reports on Innovation and Technology in Computer Science Education, pp.
177-210, ACM.

Beneteau, E., Richards, O., K., Zhang, M., Kientz, J. A., Yip, J., & Hiniker, A. (2019).
Communication Breakdowns Between Families and Alexa. In proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, ACM.

Church, L., Söderberg, E., & McCabe, A. T. (2021). Breaking down and making up - a lens for
conversing with compilers. In proceedings of the 32nd Annual Workshop of the Psychology of
Programming Interest Group (PPIG).

Dubberly H., & Pangaro, P. (2009). What is conversation? How can we design for effective
conversation? Interactions Magazine, XVI(4):22-28.

Ekman, T., & Hedin, E. (2007). The JastAdd Extensible Java Compiler. SIGPLAN Notices
42(10):1-18.

Fors, N., Söderberg, E., & Hedin, G. (2020). Principles and Patterns of JastAdd-style Reference
Attribute Grammars. In proceedings of the 13th International Conference on Software Language
Engineering, ACM.

Hedin, G. (2000). Reference Attributed Grammars. Informatica, 24(3):301–317.

Hedin, G., & Magnusson, E. (2003). JastAdd - an aspect-oriented compiler construction system.
Science of Computer Programming, 47(1):37-58.

Henderson A., & Harris, J. (2011). Conversational Alignment. Interactions Magazine, 18(3):75-79,
ACM.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingier, J., & Irwin, J. (1997).
Aspect-oriented programming. In proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pp. 220-242, Springer.

Knuth, D. (1968). Semantics of context-free languages. Mathematical Systems Theory, 2(2):127-145.

Magnusson, E., Ekman, T., & Hedin, G. (2009). Demand-driven evaluation of collection attributes.
Automated Software Engineering, 16(2):291-322.

Mori, M., MacDorman, K. F., & Kageki, N. (2012). The Uncanny Valley [From the Field]. IEEE
Robotics & Automation Magazine, 19(2):98-100.

PPIG 2021 www.ppig.org

Söderberg, E., & Hedin, G. (2011). Automated Selective Caching for Reference Attribute Grammars.
In proceedings of the International Conference on Software Language Engineering, pp 2-21, Springer
Berlin Heidelberg.

Öqvist, J. (2018). ExtendJ: Extensible Java Compiler. In the conference companion of the 2nd
International Conference on Art, Science, and Engineering of Programming, pp. 234–235, ACM.

Appendix A: Screenshots

Figure 8. Screenshot of the Progger prototype with code to the left and error information to the right.

PPIG 2021 www.ppig.org

Figure 9. Screenshot of the Progger prototype with the error details from Figure 8 expanded. The
variable, x, highlighted in the code pane corresponds to the location investigated while evaluating the

attribute that the cursor is over.

Figure 10. Mapping of errors and attribute details to conversational statements

PPIG 2021 www.ppig.org

Figure 11. The error trace details shown in order of occurrence in the computation with arrows
pointing to how the highlighting in the code changes on hover over error details.

PPIG 2021 www.ppig.org

