
A Data-Centered User Study for Proof Assistant Tools

Hanneli C. A. Tavante
McGill University

hanneli.andreazzitavante@mail.mcgill.ca

Abstract
Proof assistants gained momentum in the past decade. The popularization of functional programming
and the rise of industry cases using formal verification contributed to the popularity growth of Coq,
Lean, Agda, and other related projects. However, the existing tools for writing proofs in most of these
assistants are limited. There is almost no record of usability and interface studies for tools targeting the
development of proofs. After presenting a survey on the plug-ins and standalone working interfaces for
Coq and Lean, this work introduces a proposal for a data-centered user study to improve the existing
development environments for proof assistants. We will also explore a few features that would decrease
the entry-bar for Coq, potentially helping students and even experienced users.

1. Introduction
When users attempt to learn a new programming language, they will have multiple tools available to
support their learning process. For example, plugins for syntax highlighting, code refactoring, and style
checkers are some helpful assets that can be installed in multiple Integrated Development Environments
(IDEs) or text editors.

In the case of proof assistants, more specifically Coq, the tooling options are far more limited. Following
the official documentation, located at https://coq.inria.fr/, it is possible to find two main
standalone projects (namely IDEs) and a few other alternative packages and plugins for other text editors.

For standalone interfaces, the first official recommendation is CoqIDE. As the name suggests, it is an
IDE specific for Coq, and Fig. 1 illustrates how it looks. The second alternative is jsCoq (Gallego Arias,
Pin, & Jouvelot, 2017), an online environment where the user can use Coq without installing any depen-
dencies in their local machine. Fig. 2 shows the basic interface of jsCoq.

For complete beginners, like students with only some programming background in an object oriented
language, CoqIDE might not have the most intuitive user interface. It might require a new mindset in
order to get used to the interactive proving style and all the existing views. The top buttons, being a large
set of arrows (visually), might confuse the user and increase the entry bar for newcomers.

jsCoq, on the other hand, provides a tutorial on its main page, so a beginner would be able to obtain an
automated guidance for using the existing buttons and shortcuts. However, there are multiple usability
issues (the placement of the buttons, the color scheme, window resizing, and the overall responsiveness
of the layout are just some examples to mention).

Moving to the exiting plugins, vscoq 1 provides an interface for Coq in the Visual Studio Code IDE 2

(VSCode). When compared to CoqIDE, vscoq offers the same functionalities. But it lacks many inter-
active and liveness features supported in other programming languages plugins designed for VSCode.
To list a few examples, smart navigation between proofs and views, refactoring/extraction suggestions,
and robust error indicators are some of the missing features in the plugin.

One of the most popular plugin options is ProofGeneral (Aspinall, 2000), an extension for Emacs that
providers users with an interactive proof environment for several proof assistants, including Coq. It
offers multiple views, shortcuts, and editing facilities, including sophisticated navigation paths. It is

1https://github.com/coq-community/vscoq
2https://code.visualstudio.com/

PPIG 2021 www.ppig.org

Figure 1 – CoqIDE

Figure 2 – jsCoq

PPIG 2021 www.ppig.org

Figure 3 – Lean Theorem Prover introductory tutorial

certainly a rich tool, but like multiple other niche open source tools, there is room for improvement in
its interface.

There are other plugins and IDEs, such as Coqtail for Vim 3, a Jupyter Notebook style interface 4),
CoqPIE (Roe & Smith, 2016) and Company-Coq (Pit-Claudel & Courtieu, 2016). All these options for
the end-user come with their own interface issues.

2. An Investigation for a better UI/UX
As we saw in Sec. 1, most of the presented tools for Coq come with some sort of usability and inter-
face limitations. There may be multiple reasons to find the same issue across different tools for proof
assistants.

The first and more direct reason may be related to the lack of UI/UX experts in the research groups or
teams developing these environments or plugins.

Another issue may be related to the target audience: are those interface issues specific to Coq? One
could ask if other proof assistants have better tools.

To answer the previous question, it is worth investigating the environment for the Lean Theorem Prover.
There is a sophisticated, fully online tutorial, which is suitable for complete beginners or people with
previous experience in writing proofs, but new to Lean. Fig. 3 shows an overview of the tutorial envi-
ronment.

Lean’s online tutorial interface comes with a handy menu of tactics, helpers, and easy access to its
documentation. These interface elements provide the user (which we assume to be a newcomer) with a
friendly environment, lowering the entry bar to the proof assistant.

It is also worth mentioning the Lean plugin for VSCode has rich integration with the IDE, but possibly
because both projects belong to Microsoft. The support for Lean in other text editors is arguably limited.

Instead of adopting the existing interfaces of the Lean proof assistant as a baseline for the Coq tools, it
is possible to look at another direction: how are people using these tool, and, more importantly, how are
they writing their proofs?

From previous experience in the software development community, we know that large datasets can be
the key to reveal existing problems in interfaces. Analyzing data is also a valid approach to enhance the
overall user experience of a given tool.

An example of this heavily data-centered approach can be found for the Eclipse IDE (Murphy, Kersten,
& Findlater, 2006), and also for other Java development environments (such as BlueJ with the Blackbox

3https://github.com/whonore/Coqtail
4https://github.com/EugeneLoy/coq_jupyter

PPIG 2021 www.ppig.org

project (Brown, AlTadmri, Sentance, & Kölling, 2018)). In these studies, there is a general idea of
reconstructing the user steps by logging and persisting their full sequence of steps and actions when
using the IDE.

However, up to this point in time, there is no record of any large data-centered user experience study
that aims to understand how people are writing their proofs in Coq.

Not even other proof assistants have attempted this data approach. The closest the research community
gets is the Archive of Formal Proofs (Blanchette, Haslbeck, Matichuk, & Nipkow, 2015) for the Isabelle
proof assistant. It is a collection of publications, including the proofs themselves, but not a dedicated
database of Isabelle proofs.

There has been prior work aiming a better understanding of how users write proofs. For Coq, there have
been attempts with smaller groups of users (as in (Knobelsdorf, Frede, Böhne, & Kreitz, 2017), targeting
students, and (Ringer, Sanchez-Stern, Grossman, & Lerner, 2020), targeting experienced users). Still,
the final dataset for analysis is relatively small.

Using the idea of generating large datasets, one concrete path to efficiently trace an accurate set of issues
in the user experience would be generating snapshots upon certain events in the tools for the Coq proof
assistant. For example, pressing a button or activating a shortcut would generate a new entry on the
dataset. These entries would capture the existing status of the proof (a text), the current output of the
assistant, a cursor to indicate what has already been evaluated, and a timestamp. Together, these events
would allow a full timeline reconstruction of the user’s steps. In online environments such as jsCoq, it
would be possible to enable this kind of data collection by using a simple architecture of asynchronous
HTTP requests. Upon every click, the data to be collected would be sent to a remote web server, which
then would persist a record in a database. A similar approach has been described for the LearnOCaml
platform (Canou, Cosmo, & Henry, 2017) at (Ceci, Tavante, Pientka, & Si, 2021).

Apart from this data-centered user study, better interfaces could come from more robust integrations with
other editors and IDEs. This need could be the basis for creating a specific LSP-like (Language Server
Protocol 5) for Coq. With a better integration protocol, standards could be established for providing text
editors and IDEs with an appropriate experience for the users.

3. A Working Plan and Future Work
In Sec. 2, we visited some of the possible reasons for the poor UI/UX for proof assistants. In order to
improve these tools, it would be possible to consider the following working plan, which tackles three
main aspects:

1. Fix basic interface components - this topic targets mostly online tools; namely, jsCoq. Basic
interface components refer to aspects such as buttons size and position, color scheme, easy access
to documentation, proper highlighting, hiding unnecessary information from the user, responsive
layouts, and, very importantly, considering accessibility options. Online tools, like jsCoq, are part
of a web environment, and hence, we can apply prior well-known usability principles to it.

2. In parallel, it would be possible to start a draft of a LSP-like protocol for Coq. There is currently
an ongoing discussion in the community 6. One key point to consider is that writing a proof
might require different support than the settings we have for writing code for web development,
for example. But at this time, we don’t know how such protocol should look like.

3. Lastly, also in parallel, it would be important to support a verified live programming environment.
Projects like Hazel (Omar, Voysey, Chugh, & Hammer, 2019) use typed holes to provide live
typing feedback for the user. The project uses a simplified functional programming language. It

5https://microsoft.github.io/language-server-protocol/
6https://github.com/ejgallego/coq-serapi/issues/26

PPIG 2021 www.ppig.org

Figure 4 – Working steps for building better tools for Coq.

would be interesting to extend its metatheory to formalize other languages like Coq, ensuring, for
example, that all the provided hints are also formally verified.

The three base steps previously described could then be followed by the data-centered user study (de-
scribed in Sec. 2). Combined with a proposal of the LSP-like protocol, it could be the key to achieving
a more stable UI for Coq tools. This UI would be suitable for both beginners and advanced users.

An enhanced metatheoretical formalization, combined with the data analysis results, could lead to a
concrete classification of proof builds and profiles. Ideally, the end user would benefit from automated
hints adapted to their experience level (novices or experienced users, for example).

Fig. 4 summarizes a potential roadmap for achieving a better user experience when using proof assis-
tants.

This paper aims to show that it is possible to build better tools for proof assistants. The enhancements
could lower the entry bar for newcomers, and also better serve experience users. Moreover, there seems
to be a whole new set of research topics involved: online proof environments, accessibility components
(for web and offline tools), hint generation, standards/protocols for proof environments, proof build
classification, etc. Whereas the roadmap previously mentioned is not fully completed, it describes initial
concrete steps towards better tools for the Coq proof assistant.

The data analysis of the described dataset could be the groundwork for subsequent studies in the educa-
tion field (how students learn to prove properties in proof assistants; how to design effective program-
ming walkthroughs (Bell et al., 1994) for Coq), usability field, and even bring benefits for the machine
learning domain, possibly complementing projects such as CoqGym (Yang & Deng, 2019)7.

4. Acknowledgments
The author would like to thank the PPIG members for encouraging the publication of these ideas.

5. References
Aspinall, D. (2000). Proof general: A generic tool for proof development. In S. Graf &

M. I. Schwartzbach (Eds.), Tools and algorithms for construction and analysis of systems, 6th

7https://github.com/princeton-vl/CoqGym

PPIG 2021 www.ppig.org

international conference, TACAS 2000, held as part of the european joint conferences on the
theory and practice of software, ETAPS 2000, berlin, germany, march 25 - april 2, 2000, pro-
ceedings (Vol. 1785, pp. 38–42). Springer. Retrieved from https://doi.org/10.1007/
3-540-46419-0_3 doi: 10.1007/3-540-46419-0_3

Bell, B., Citrin, W., Lewis, C. H., Rieman, J., Weaver, R. P., Wilde, N., & Zorn, B. G. (1994). Using
the programming walkthrough to aid in programming language design. Softw. Pract. Exp., 24(1),
1–25. Retrieved from https://doi.org/10.1002/spe.4380240102 doi: 10.1002/
spe.4380240102

Blanchette, J. C., Haslbeck, M. W., Matichuk, D., & Nipkow, T. (2015). Mining the archive of formal
proofs. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, & V. Sorge (Eds.), Intelligent computer
mathematics - international conference, CICM 2015, washington, dc, usa, july 13-17, 2015, pro-
ceedings (Vol. 9150, pp. 3–17). Springer. Retrieved from https://doi.org/10.1007/
978-3-319-20615-8_1 doi: 10.1007/978-3-319-20615-8_1

Brown, N. C. C., AlTadmri, A., Sentance, S., & Kölling, M. (2018). Blackbox, five years on: An
evaluation of a large-scale programming data collection project. In L. Malmi, A. Korhonen,
R. McCartney, & A. Petersen (Eds.), Proceedings of the 2018 ACM conference on international
computing education research, ICER 2018, espoo, finland, august 13-15, 2018 (pp. 196–204).
ACM. Retrieved from https://doi.org/10.1145/3230977.3230991 doi: 10.1145/
3230977.3230991

Canou, B., Cosmo, R. D., & Henry, G. (2017). Scaling up functional programming education: under
the hood of the ocaml MOOC. Proc. ACM Program. Lang., 1(ICFP), 4:1–4:25. Retrieved from
https://doi.org/10.1145/3110248 doi: 10.1145/3110248

Ceci, A., Tavante, H. C. A., Pientka, B., & Si, X. (2021). Data collection for the learn-ocaml pro-
gramming platform: Modelling how students develop typed functional programs. In M. Sher-
riff, L. D. Merkle, P. A. Cutter, A. E. Monge, & J. Sheard (Eds.), SIGCSE ’21: The 52nd
ACM technical symposium on computer science education, virtual event, usa, march 13-20, 2021
(p. 1341). ACM. Retrieved from https://doi.org/10.1145/3408877.3439579 doi:
10.1145/3408877.3439579

Gallego Arias, E. J., Pin, B., & Jouvelot, P. (2017). jsCoq: Towards hybrid theorem proving inter-
faces. In S. Autexier & P. Quaresma (Eds.), Proceedings of the 12th Workshop on user interfaces
for theorem provers, coimbra, portugal, 2nd july 2016 (Vol. 239, p. 15-27). Open Publishing
Association. doi: 10.4204/EPTCS.239.2

Knobelsdorf, M., Frede, C., Böhne, S., & Kreitz, C. (2017). Theorem provers as a learning tool in theory
of computation. In J. Tenenberg, D. Chinn, J. Sheard, & L. Malmi (Eds.), Proceedings of the
2017 ACM conference on international computing education research, ICER 2017, tacoma, wa,
usa, august 18-20, 2017 (pp. 83–92). ACM. Retrieved from https://doi.org/10.1145/
3105726.3106184 doi: 10.1145/3105726.3106184

Murphy, G., Kersten, M., & Findlater, L. (2006). How are java software developers using the elipse ide?
IEEE Software, 23(4), 76-83. doi: 10.1109/MS.2006.105

Omar, C., Voysey, I., Chugh, R., & Hammer, M. A. (2019). Live functional programming with typed
holes. Proc. ACM Program. Lang., 3(POPL), 14:1–14:32. Retrieved from https://doi.org/
10.1145/3290327 doi: 10.1145/3290327

Pit-Claudel, C., & Courtieu, P. (2016, January). Company-coq: Taking proof general one step closer
to a real ide. In Coqpl’16: The second international workshop on coq for pl. Retrieved from
http://hdl.handle.net/1721.1/101149 doi: 10.5281/zenodo.44331

Ringer, T., Sanchez-Stern, A., Grossman, D., & Lerner, S. (2020). Replica: REPL instrumentation
for coq analysis. In J. Blanchette & C. Hritcu (Eds.), Proceedings of the 9th ACM SIGPLAN
international conference on certified programs and proofs, CPP 2020, new orleans, la, usa,
january 20-21, 2020 (pp. 99–113). ACM. Retrieved from https://doi.org/10.1145/
3372885.3373823 doi: 10.1145/3372885.3373823

Roe, K., & Smith, S. F. (2016). Coqpie: An IDE aimed at improving proof development pro-

PPIG 2021 www.ppig.org

ductivity - (rough diamond). In J. C. Blanchette & S. Merz (Eds.), Interactive theorem prov-
ing - 7th international conference, ITP 2016, nancy, france, august 22-25, 2016, proceed-
ings (Vol. 9807, pp. 491–499). Springer. Retrieved from https://doi.org/10.1007/
978-3-319-43144-4_32 doi: 10.1007/978-3-319-43144-4_32

Yang, K., & Deng, J. (2019). Learning to prove theorems via interacting with proof assistants.
In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the 36th international conference
on machine learning, ICML 2019, 9-15 june 2019, long beach, california, USA (Vol. 97, pp.
6984–6994). PMLR. Retrieved from http://proceedings.mlr.press/v97/yang19a
.html

PPIG 2021 www.ppig.org

