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Abstract 

The aim of this proposal is to suggest a possible mechanism for developing abstract skills in 
Computer Science students during their undergraduate studies. Some research has gone into the 
development of conceptual skills in school aged students and into the meaning of abstraction. My aim 
is to develop methods using the idea of Mathematical proofs, to help students generalise, which will 
help them develop self-efficacy and confidence in using their intellectual curiosity. Students will be 
exposed to formal proofs, and most of all encouraged to think of some themselves. 

Introduction 

The aim of my project is to identify whether exposure to general systematic and iterative processes in 
Maths help non-mathematicians develop stronger algorithmic skills; whether linking discrete and 
continuous processes helps students produce more efficient code. In doing this, I hope to investigate 
whether this will help them: 

 Generalise results in order to trace bugs and possibly avoid them. 
 Identify exceptions or limiting cases. 
 Find expressions that result in less time and space complexity. Some expressions may not be 

common mathematical results that are easy to find – the computer scientists may need to work 
out the expression themselves! 

 Calculating the complexity of an algorithm may also require some mathematical skill – 
particularly if the computer scientist needs to approximate an expression in a function. 

Mathematical Proofs 

Mathematical proofs are covered in first year undergraduate degrees in Maths and rarely touched on 
earlier. This area of pure Maths is often thought to be the most novel and difficult (Almeida, 2010), 
perhaps due to the following reasons: complex mathematical language and deeper, systematic 
thinking that may at times seem counter intuitive. The skills gained contribute to a more insightful 
approach to the broader subject and better abstract reasoning (Schoenfeld, 2009). Students encounter 
mathematical subtleties, learn to distinguish between them and use them. 

Computer Science students as a group rarely study formal mathematical proofs, instead taking a more 
practical, ‘methods based’ approach to Maths in the same way Engineers and Scientists do. If they do, 
these are in areas seen as directly relevant to fundamental CS, such as discrete Maths, and are ‘case’ 
proofs rather than ones of general results. Studies have been conducted into measurement of long-
term skills in these areas of Maths (Qian & Lehman, 2017); a comparable measurement in continuous 
and other areas of maths could be of use to CS educational research, particularly if the impact of these 
gained skills can be seen at a fundamental and advanced level. 

 

Difficulties in Computer Science and Maths 

Qian & Lehman (2017) identify Maths as an area causing difficulty, in that adherence to knowledge 
gained at secondary school impacts understanding of concepts in computer science. I would like to 
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take this further: can this skills gap be tackled by more exposure to continuous and deep Mathematics 
language and processes? Many CS programs do not emphasize this, particularly at the early stages, 
and this is seen as detrimental by some even early on (Baldwin, Walker & Henderson, 2013). The 
latter manifests itself as using a trial-and-error approach to Maths and programming.  

Cognitive overload can be a problem, particularly when facing numerous levels of abstraction and 
more ‘practical’ considerations such as memory, types, etc. Lack of clarity over the meaning of 
symbols and how they are processed in a programming language can also be an area of confusion for 
students.  

The practice of Mathematical Proofs certainly provides deeper insight for Mathematics students into 
abstract processes, by guiding them in breaking down concepts, understanding them and identifying 
both linguistic and mathematical subtleties. Can it do something similar for Computer Science 
students, in a manner that can be contextualised in a computer program? 

Some research has gone into this, focusing on the areas of discrete maths and logic, as they can be 
applied to Computer Science at a more fundamental level. Other areas of Maths can be of use but are 
more relevant to advanced and applied areas of Computer Science (Hartel, Van Es, Tromp, 1995). I’d 
like to investigate whether proofs in these other areas of Mathematics can also offer insight for 
students through the abstract skills required to understand and use them. Proofs that require an 
iterative process and use continuous mathematical variables have the potential to help students 
understand algorithmic processes on a more abstract level. 

My project 

The method of instruction would be pattern-oriented, as suggested by Muller and Haberman, in that 
fundamental concepts would be illustrated through different processes (Muller and Haberman, 2008). 
My reason for choosing these mathematical processes, is somewhat “soft” (Hazzan, 2008), in that 
many of them present important CS concepts such as nesting, iteration, recursion and perhaps even 
arithmetic overflow using objects and syntax that is already somewhat familiar to students. There are 
also some similarities between learning to code and learning to prove: students ‘trace’ proofs; develop 
an intuition for the appropriate tools to use for a given problem, such as a mathematical inequality; 
use this intuition to implement a proof. 

Specific areas of Mathematics to present to students also need to be decided. My original idea was to 
use proofs illustrating steps from discrete Mathematics to continuous ones, for example by starting 
from patterns in sequences and series, then leading on to continuous functions. The reason for this is 
that many proofs in these two areas are similar, which makes the progression between these two types 
of sets more natural. It may however be that students benefit more from having a deeper look into the 
uses of Mathematics in areas they are exposed to at the earlier stages of their CS education, and this 
would likely be in Discrete Mathematics. 

 

Methods 

Some work still needs to go into identifying appropriate methods for the study. The goal of the study 
is to build on the metacognitive skills of a group of students who will benefit the most from the 
intervention. My tendency would be primarily to choose an experimental group of students with a 
broad range of experience in Mathematics, but nevertheless a willingness to learn a new approach and 
curiosity in a variety of areas including Maths. Students who embody this mindset, despite having 
lower confidence in their Maths skills, will also be strongly encouraged to take part. The success of 
the intervention will be determined both from their project process and output, as well as their 
reported increase in confidence in their coding skills and ability to use new tools. Students will then 
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have been equipped with a toolkit of mathematical expressions and arguments that will be useable to 
them in their career as Computer Scientists. 
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