
POGIL-like learning and student’s impressions of software engineering topics:
A qualitative study

Bhuvana Gopal
School of Computing

University of Nebraska-Lincoln
bhuvana.gopal@unl.edu

Ryan Bockmon
School of Computing

University of Nebraska-Lincoln
ryan.bockmon@huskers.unl.edu

Stephen Cooper
School of Computing

University of Nebraska-Lincoln
stephen.cooper@unl.edu

Abstract

In this study, we analyze students’ impressions and perceptions of professional software engineering top-
ics and practices. We explore student thoughts on the interconnections between various industry relevant
software engineering topics such as requirements analysis, UI/UX, work patterns, agile communication,
documentation, and business value. We studied student voices in a semester long undergraduate soft-
ware engineering course, after they underwent instruction using POGIL-like, a guided inquiry based
pedagogy. At the end of the course, we collected student responses to open ended questions regarding
their perceptions of professional, end user software engineering topics. We combined student responses
to these questions with researcher memos as well as reflective researcher journals. We analyzed these
written responses using content analysis and identified the themes that the data yielded. The main themes
that emerged from our qualitative analysis were: 1) Software is more than just a tool to solve business
problems. 2) The need for documentation varies based on the process model adopted. 3) Timely and fre-
quent communication between team members and stakeholders is essential. 4) Downtime during work
is best used to further the sprint goals of the team or improve one’s technical acumen. We attempt to
understand if POGIL-like helped students develop a professionally sound understanding of basic soft-
ware engineering topics and how they work to get a software product developed, from requirements to
release.

1. Introduction
Student perceptions of a discipline are closely tied to their motivation to do well in it. When students
feel comfortable with the environment they are in and the abilities they need to study the discipline, they
tend to remain in the program more often than not. Retention is closely tied to motivation (Tinto, 1997;
Bean, Eaton, et al., 2000). A good understanding of student perceptions of the social and academic
experiences in software engineering can help improve student motivation in the discipline.

In an attempt to understand how CS students perceived various topics in software engineering (SE) and
how they saw themselves in the discipline, we conducted a qualitative study with 24 sophomore/junior
students with varying computing majors. We used POGIL-like (our implementation of Process Oriented
Guided Inquiry based Learning) as the pedagogical approach. Our goal was to understand if students
were able synthesize concepts from SE topics beyond just a basic level understanding of each topic, as
well as how they perceived themselves in the discipline of software engineering.

The rest of the paper is organized as follows. We present prior work in software testing, POGIL-like, and
student reflections in Section 2. We present our research question in Section 3. Our research methods
are explained in Section 4. Themes from our data analysis are presented in Section 5, with a detailed
discussion in Section 6. We detail the threats to the validity of our study in Section 7, and conclude in
Section 8.

PPIG 2022 154



2. Prior Work
There are several studies on students’ motivation and perceptions across various fields, and specifically
in the STEM disciplines including CS. Some studies involve pedagogical interventions that have shown
to affect student motivation as well.

Ames and Archer (Ames & Archer, 1988) showed that students’ perceptions of classroom climate were
related to specific motivational variables that have implications for the development of self-regulated
learning as well as a long term involvement and interest in learning. Biggers et al. (Biggers, Brauer,
& Yilmaz, 2008) discuss ways to keep student interest in CS, and strengthen their experiences. One
of their key takeaways that an asocial, community-absent environment with limited human interaction
among peers was a deterrent in students staying motivated and interested in CS. They also found that
several students found CS work to be time consuming, boring and tedious, with a pronounced lack
of social interaction. Students also had little to no idea of what a CS career looks like. This led to
students dropping out within a relatively short period. Agosto (Agosto, Gasson, & Atwood, 2008)
measured students’ perceptions, attitudes, self-efficacy, and identity with respect to their intentions to
further pursue computer science. In their study, self-perception regarding one’s own ability to use CS
techniques for problem solving, and identity (whether students thought they were computer scientists)
emerged as the primary driver for differences in intention.

Peters (Peters & Pears, 2013) constructed a theory based framework to study students’ CS identities,
how students perceive learning CS and IT as meaningful, and how they are supported or hindered by
their education. They found many students are influenced by their prior experiences with computing
as far as their CS identity. Social interactions and group experience participation play an important
role in shaping the CS identity of students. Dempsey et al. (Dempsey, Snodgrass, Kishi, & Titcomb,
2015) studied how to recruit and retain women in CS. They found that an increased CS self perception,
specifically in terms of students’ perceived self ability to be a computer scientist was a driving force in
who stayed in CS.

Souza (Souza, Moreira, & Figueiredo, 2019) investigated students’ perception on the use of problem-
based learning (PBL) in an introductory SE course and found that there is a positive perception of the
contribution of the project assignment on learning specific SE topics (such as software requirements,
software Design, and agile methods), and this perception was even more positive for the students in the
PBL course. Melnik (Melnik & Maurer, 2005) explored student perceptions of agile methods. Their
experiences introducing agile methods in the CS courses indicate that students are enthusiastic about
core agile practices and that there are no significant differences in the perceptions of students of various
levels of educational programs. Almulla (Almulla, 2020) studied PBL in relation to students’ motivation
regarding their development of feelings of autonomy, competence, and relatedness (Almulla, 2020).
They found a significant correlation between PBL and student engagement.

As seen from the studies above, there are research questions regarding student perceptions and moti-
vation in CS and SE that have been answered. This is still a fledgling field, with many aspects yet
unexplored. There are not many studies on how students perceive SE topics especially in the light of
collaborative and active learning pedagogies, and through our study, we hope to fill the gap.

3. Research Question
In this paper we study students’ perceptions of agile SE topics, within the context of a POGIL-like
software engineering course. Our research question for this study was:

RQ: Were undergraduate students able to learn from and build upon multiple relevant concepts to dis-
play a connected understanding of software engineering topics when instructed using a POGIL-like
pedagogy?

PPIG 2022 155



4. Method
4.1. POGIL-like: The approach
We chose to implement POGIL in the software engineering classroom since it is a process heavy ap-
proach, spurring students to think deeper and co-construct (Ben-Ari, 1998) concepts in a small group
setting, through inquiry and application (Kussmaul, Mayfield, & Hu, 2017). We call our approach
POGIL-like since POGIL is a copyrighted term to be used only by the POGIL project (CS-POGIL |
DCV (Directed, Convergent, Divergent) Questions, n.d.).

POGIL-like is a pedagogy where students are organized into small teams. Students collaborate and
actively learn to work together (Kussmaul, 2011). Students start each class session with little or no prior
knowledge of the topic, so they can benefit from the co-construction of knowledge through POGIL-
like activities without added misconceptions. The instructor serves as an active facilitator, walking
around the classroom and helping students as needed during the session. Each team consists of 4-6
students, and each student has a specific role to play. There are 4 roles: Manager, Recorder, Presenter
and Reflector. Students engage with "models" to learn the content and complete "activities" to exercise
their understanding of the content. An overview of the POGIL-like pedagogy and its salient features can
be found in our previous work (Gopal & Cooper, 2022).

More information on the types of questions, the POGIL-like "model" and activities can be found in our
paper on POGIL-like (Gopal & Cooper, 2022). POGIL-like a combination of one or more models and
a set of one or more activities in each session. Models contain content presented with tables, figures,
action verbs, and some text. Each model is followed by one or more activities. A model-activity set
combination is called a POGIL-like cycle. This cycle encourages students to explore (E), invent (I) and
apply (A) the content concepts. To create the activities we used three types of questions -Directed (D),
Convergent (C) and Divergent (V) questions (Gopal & Cooper, 2022). Several such POGIL-like learning
cycles (E-I-A) consisting of models and corresponding D/C/V questions were used in our classroom
implementation.

4.2. Study Context
Our research project was reviewed and classified as exempt by our University’s Institutional Review
Board. Students who chose to participate in the study did so by granting the researchers their informed
consent. Data for this study were collected from 24 participants of a cohort of sophomore/junior students
taking a software engineering class in the Fall of 2021. All students were taught using POGIL-like in
the classroom in person.

4.3. Data Collection
Students were requested to answer the same online questionnaire at the beginning and end of the
semester. We created this questionnaire specifically to target concept correlations between SE top-
ics such as requirements gathering, Agile ceremonies and artifacts, and software testing. This open
ended questionnaire asked students to describe what they thought of various topics and workflow in the
real world. We used prompts such as "What is the role of requirements elicitation in SE?", "In agile
software engineering, how does communication take place between team members and stakeholders?",
and "When you get stuck during development, what would you typically do?" We combined student
responses for these questionnaires with our real time field notes and reflective journal on students and
their individual performances in various roles during the POGIL-like sessions (Emerson, Fretz, & Shaw,
2011). During our analysis, we corroborated students’ written responses to the open ended questionnaire
along with these field-notes and journal entries.

4.4. Data Analysis
Our data analysis consisted of content analysis (Hsieh & Shannon, 2005). We identified themes based on
a mutimethod data collection (including participant/non-participant observations and field notes). Our
primary goals during content analysis were to identify patterns in ideas as expressed by our students
in their written responses. The first and second author of this paper coded our participants’ written
responses individually, generating and assigning over 230 codes. We employed frequency mapping of

PPIG 2022 156



codes iteratively both manually and using the HyperResearch software (Qualitative Data Analysis tool
- HyperResearch, n.d.). We arrived at a code map (Anfara, Brown, & Mangione, 2002) which we used
to help the process of code grouping and categorization into themes. We converged the code groups
into the notes from our field notes and journals to come up with our themes by two separate coders
independently and in parallel (Strauss & Corbin, 2015). In doing so, we were able to identify, verify and
collate the themes we both noted.

We present the following data sections where we aim to forefront the opinions and perceptions of our
participants in their own voices. We have followed existing research guidelines on how to position par-
ticipant participation, and our method for meaning making involves understanding recurring expressions
of participant sentiments and ideas by taking into account the context in which they were written and
submitted (Creswell & Poth, 2018; Ketelhut & Schifter, 2011; Foley, 2002). In the following section,
we highlight participants’ voices by thematically presenting their written questionnaire responses. We
use participants’ own words as subheadings in each theme presentation. We used pseudonyms for our
participants’ actual names. Our primary focus in this study was to understand students’ perceptions of
SE topics. When instructed using the POGIL-like pedagogical approach, were students able to make
connections between various SE concepts? How did their perceptions of SE concepts and topics relate
to their identity in CS? These were the main questions we sought to answer.

4.5. Reliability
Intercoder agreement or inter-rater reliability is a measure of reliability commonly used in qualitative
studies (Creswell & Poth, 2018). We focused on intercoder agreement to ensure the reliability of our
coded data based on multiple coders interpreting the data through the process of coding, code mapping,
categorization and theming. The first two authors of this paper, both trained in qualitative research
methods, served as coders for our data. We calculated Cohen’s Kappa (Hsu & Field, 2003) to measure
intercoder reliability and we report an intercoder reliability (Creswell & Poth, 2018) of 0.9 (90%) among
all themes that emerged from our 230 codes.

5. Results: Themes
In the following subsections we position the voices of our participants and start with how they broadly
viewed the purpose of software. We explore their thoughts on requirements gathering, and the role of
documentation. How do students think about communication in an agile SE environment, and how do
they handle being stuck during everyday development?

5.1. Theme 1: Software is more than just a tool to solve business problems
We found that students viewed software as being important to end users, beyond just the business needs.
While software did solve business problems, our students found it to be a source of potentially informing,
educating, and ultimately, uniting end users.

"Software is often created with input from domain experts. They usually provide insights into how a
problem would be solved without computers, and then developers use that solution to help them solve
general cases." - Pete.

"Software is just more than to solve domain problems, more after this pandemic software use is increased
exponentially. Software has the potential to unite people." - Kim.

"In my opinion, software can do more than just solving domain problems. It can also be used to inform,
educate and help raise awareness on social issues. I think that software can be, and is, used everywhere
in today’s world. I think that’s also obvious to see when every company hires a software engineer." -
Tim.

"Software is used mostly for solving a company’s specific problems. Software cannot be used to solve
every single problem that a company may have, but if a company has a specific problem, software can
be a great solution to solve it." - John.

"Software is used to solve problems. But it is also an experience for the user to enjoy. Sometimes (de-

PPIG 2022 157



pending on what type of software you are talking about) the purpose could be solely for enjoyment.
Although the idea for software development is to solve a problem/addition that can be used by con-
sumers." - Alia.

Software is mostly used to improve and solve modern problems efficiently, quickly, and accurately.
Students disagreed with the thought that software is primarily used as a tool for solving problems specific
to a business and its needs - they opined that it could do more than that. They expressed that while
software could reduce the time it takes to solve or completely solve problems for a business need, it
could also be used to enhance an end users experience of the solution. It seems that students struggled to
articulate what exactly the additional value of software was besides solving business/domain problems.

5.2. Theme 2: The need for documentation varies based on the process model adopted
The role of documentation in SE takes center stage in this section. Our students went beyond the surface
level understanding that documentation is required and helps maintain software; they understood and
expressed that the amount and granularity of documentation required in a software development project
depends on many factors, as we detail below.

"Documentation truly depends on what kind of approach you are taking to developing software. Al-
though all approaches should have some documentation, the amount of documentation and when the
documentation is created depends on the approach. For example, if a business is in need of high security
software that does a pre determined set of functions and will not change as it is vital software, a busi-
ness will probably take a waterfall approach...documentation is followed and developed depends on the
needs of the customer and the kind of software that is being developed." - Matt.

"Documentation will depend largely on the business’s needs and what type of software project it is.
If the business knows exactly what they need up front, and give those needs to the development team,
documentation is more important. If a project is made agilely, the documentation may be more minimal
because the software is everchanging." - Paul.

"There are times when documentation is not needed. One scenario would be when you are making
software for yourself, and there really is not any reason for documentation to slow down the process." -
Linda.

"Depends on the type of business needs driving the software, because I don’t think it’s so clean cut. For
some businesses that just need simple software like the addition of a search bar to their online store
doesn’t need too much, it can be minimal. However a place like a hospital dealing with things like
patient records should be pivotal because of all the care that needs to be taken with a database and
formatting of records along with other requirements that need to be in place." - Lupe.

"It is absolutely critical that people other than you can understand your code. Even if you step away
from your code, it makes it easier for you to also understand your code. In a waterfall method, there
isn’t a ton of revolving documentations, whereas in agile, the documentation is necessary." - Hannah.

Our students displayed a strong understanding of the idea that documentation is important, but depends
on the business needs. They expressed an understanding of the different documentation approaches
warranted by different software process models. They understood that how important documentation is
can depend on a variety of factors, and that for some businesses it can be critical, but for some others it
can be relatively minimal or unnecessary.

5.3. Theme 3: Timely and frequent communication between team members and stakeholders
is essential

We can classify our participants’ voices on agile communication under three topics: frequency of com-
munication, parties involved in communication and the importance of communication. Our students
displayed a good understanding of the evolving nature of requirements (when developing software us-
ing an agile process) and how the frequency of communication within the team and with stakeholders
could affect the quality of the end product.

PPIG 2022 158



"Requirements change in every sprint - sometimes they could change drastically. It is very important
that we keep communicating with the stakeholders and the other devs so that we capture and code to the
correct requirements for each sprint." - Matt.

"Scrum masters, project managers, developers and product owners should all be involved in regular
communication. Daily scrums for the development team, and at least weekly meetings with the stake-
holders are crucial." - Sarah.

"The quality of the software being developed is highly dependent on how well the team communicated
with itself and with the clients. Without getting requirements right, code won’t be done correctly, and
tests will be testing bad code that doesn’t reflect what the customer wants." - Rachel.

"Without constant communication, the product will fail - how will developers know what the clients want
as requirements change? How will they develop and test?" - Alia.

Based on the above statements, we can see that our students understood and advocated frequent com-
munication between all parties involved - daily for team members and weekly for other stakeholders.
Students also clearly understood the evolving nature of requirements on an agile project, and the im-
portance of timely communication with stakeholders so that the correct requirements were captured for
each sprint. The importance of meaningful and effective communication cannot be overstated in an agile
environment, and our students exhibited an understanding of the ramifications of ineffective communi-
cation.

5.4. Theme 4: Handling downtime and time management in software engineering
We asked students how they would proceed when they were unable to proceed during development due to
limiting circumstances. They had to put themselves in the context of a professional software engineering
job, and had to think through the lens of a junior software engineer. The following comments illuminate
their thought process on this topic. This is important to know because how a student proceeds when they
are stuck, could indicate how they perceive themselves in the context of software engineering.

"Take a break, even though we are just sitting down coding drains a lot of energy, generally a lot of
programmer feel mental stress, so relaxation is really important. I would take a time out and relax bring
my way back to work with stable mental health." - Tim.

"During downtime I would want to try and relax to clear my mind so I could think of possible projects
to work on that would be beneficial to my role at the company. I would also want to mingle with other
developers to learn more about different types of projects." - Asher.

"I would probably work on resolving tasks in the sprint backlog. If there isn’t anything in the sprint
backlog, I guess I would create some more unit tests just to make sure the methods work. If there are
already plenty of unit tests, I suppose I would work on some documentation or double checking the code
for code smells." - Mike.

"Continue working on other items, bugs, or features that needed to be done. Interact with co-workers
and gain insight with what they are working on or take a longer break. There is always a cycle to it and
eventually you need to take advantage of it." - Wayne.

"When I have downtime during a workday as an industry professional I would try to pick up more
responsibilities from the team and try to learn new skills." - Cody.

There are several threads that emerge from the above quotes: students want to individually help move
the sprint/product backlog forward, focusing on immediate development needs; students wish to help
their fellow teammates, fostering a sense of solidarity and teamwork; students want to improve their
technical skills - learning new technologies and methodology elements; and finally, students recognize
the mental stress that comes with agile software development with its constant deadlines, and wish to
use downtime to focus on improving their mental health.

PPIG 2022 159



6. Discussion
6.1. Key takeaways
The most important takeaway from our analysis is that our students connected elements of several soft-
ware engineering topics together. Their understanding of many topics was practical, well informed and
deeper than a simple surface level understanding of said topic. For example, they were able to relate
requirements to testing, communication to requirements, and the Agile process to end user focused soft-
ware design. This is noteworthy because this was the first SE course that most of our students had
encountered in their academic preparation. Students also expressed a clear sense of belonging in the
way they spoke about SE topics, and their opinions on various issues relating to them.

Several interesting themes emerge from our analysis. First, our students said that software is more than
a tool to simply solve domain problems. They perceived software development in general as leading to
a product for the end user to enjoy. Our students also saw software as a living and breathing product.
Changes could be constantly made and updates could be pushed out every other sprint. Software can
therefore adapt to changes in the real world, in terms of business needs and end user human needs. It is
interesting to note how students captured the intangible idea of software being more than the sum of its
parts, with an ability to potentially inform, educate, and/or uplift human beings. In summary, according
to our participants, software is designed to solve domain problems, but can be much more. The "much
more" primarily related to other people using the software, and their experience and level of enjoyment
with it. However, this idea of UX being separate from the actual software is indicative of an incomplete
understanding of some aspects of SE.

Second, our students exhibited a mature understanding of the role of documentation in software devel-
opment, recognizing that documentation, in most cases, will depend largely on the business’s needs and
what type of software project it is being developed. We see again that there is a sense of community and
a recognition of their role as a software engineer being tied to the larger group of engineers in a company
or enterprise.

Third, our students saw that requirements change in an agile environment, and requirements engineering
is a tool for effective communication to help clear doubts and misunderstandings among developer and
stakeholders. Students expressed that the role of requirements elicitation was to come to an agreement
between the consumer (stakeholder) and development team of what the exact parameters of the software
will be. Again, we see a recognition of software being engineered in the context of several people-
stakeholders, end users, and development teams.

Next, our students understood the benefits of effective communication between all parties involved -
development team, product manager, project manager, stakeholders, end users, and management. They
also understood that when effective and continued communication is broken, the product suffers. Stu-
dents also recognized that software quality depended heavily on reliable and steady communication
between parties.

Finally, when asked how students would handle downtime, they almost unanimously expressed a wish
to help other teammates, or take on more work from the existing sprint/product backlog. Some students
also mentioned the importance of taking time to care for their mental health, recognizing the stress and
mental strain that real world software development can entail.

Our analysis reveals that our students prioritized business needs, were curious, eager to take on more
work as needed, with a strong work ethic, and strove hard to maintain good communication and trans-
parency with their stakeholders and development team. These are in agreement with our previous study
(Gopal, Cooper, & Bockmon, 2021) where we heard from industry partners on the advice they would
give SE students to succeed in the industry, based on their interactions with and observations of students
in a peer instruction (Mazur, 1997) based SE course. By varying the pedagogical approach to POGIL-
like but keeping the content and instructor unchanged, and with similar prior academic preparation, our
participants seemed to have gained some other things: Possibly due to the sustained collaboration and
concept invention aspects of POGIL-like, our students developed a strong sense of where they belonged

PPIG 2022 160



in a software development team, in relation to stakeholders, and end users. They also got to apply their
newly invented concepts in each POGIL-like session (E-I-A cycle) and had a more realistic grasp on the
exhilarating and potentially demanding nature of individual and collective software development.

6.2. POGIL-like: its influence on student perceptions and student motivation
Literature shows that autonomy and self-driven inquiry has been showed to increase student motivation
(Buchanan, Harlan, Bruce, & Edwards, 2016; Biggers et al., 2008). Student motivation is linked to the
student perceived value or meaning in the academic work at hand. Student interest increases cognitive
and affective outcomes, specifically student motivation (Ainley, Hidi, & Berndorff, 2002). "Student
control of the learning process,” not only influences academic achievement, but greatly increases student
motivation (Mega, Ronconi, & De Beni, 2014).

Perhaps the largest difference in instructing students using traditional lecture vs POGIL-like is the auton-
omy afforded to students. To enable problem solving, critical thinking and reasoning skills, the D/C/V
question pattern in POGIL-like creates fertile ground for inquiry based discovery: initial direction (D),
convergence of knowledge from the directed discoveries (C) leading to co-construction and invention of
concepts, and finally, divergent application of the newly constructed concepts in unfamiliar scenarios.
In a topic like DevOps, for example, with a specific concept like continuous integration, there could
be several ways of approaching the topic. With traditional lecture, the topic maybe taught with slides
that all students receive. With POGIL-like, with the overarching guidance of the activities (with several
D/C/V questions in E-I-A cycles) and models, each individual student explores the topic on their own.
Each student invents the concept together with their team mates, co-constructing the ideas that thread
together the complete concept, with the help of the model and activities. There is a rationale for every
step in these activities, and students have to think about the "Why" in addition to the "How". Students
have to then individually apply the newly invented concept - and this can be different for each student
as well. We see that there is a high level of autonomy in each step of the E-I-A cycle, and a high level
of engagement is required to complete each activity. The high level of autonomy in the POGIL-like
paradigm allows students ways to think and function independently, as well as contribute freely within
a group.

7. Threats to validity
Lincoln and Guba (Lincoln & Guba, 1985) indicate that validity in qualitative studies is expressed as
respondent/participant bias, reactivity, and researcher bias. As for participant bias, there is always a
possibility that our students responded to the questions based on what they thought was the right or
acceptable answer instead of what they really felt. We took care to explain to participants that they
received participation credit, not correctness credit. We also ensured that students knew that there were
no right or wrong answers to the survey questions. The primary author of this paper acknowledges that
her vast experience and background in the software engineering industry is likely to have influenced her
interpretation of the the data with a marked bent towards industry relevant information. We attempted to
lessen the effects of these aspects (Robson, 2002), we triangulated student response data with our own
reflections and journals and audits.

Data saturation was achieved based on the guidelines by Creswell and Poth (Creswell & Poth, 2018).
There is always a possibility that in spite of our systematic thematic analysis, other researchers may infer
and construct different themes from our raw data. We are confident in our findings to be valuable and
relevant within the context of our study because we triangulated our data from 24 student responses from
a single cohort with the same instructor and instructional pedagogy with the same topics of instruction.

8. Conclusion and future work
In answering our research question, "Were undergraduate students able to learn from and build upon
multiple relevant concepts to display a connected understanding of software engineering topics when
instructed using a POGIL-like pedagogy?", we conclude that our students did indeed connect various
software engineering topics in constructing their understanding, and displayed synthesis skills, nuance

PPIG 2022 161



and depth in explaining their impressions, when instructed using our POGIL-like pedagogy. Students
showed analysis and synthesis skills beyond just basic knowledge where they could tie together topics
like requirements engineering and testing, or communication with all aspects of software engineering.
This leads us to believe that students were able to approach the higher layers of Bloom’s taxonomy dur-
ing their learning (Bloom, 1956). We think that this deeper understanding was fostered by the structured,
process oriented approach in POGIL-like, specifically with the collaborative learning cycles utilizing the
various types of Directed, Convergent and Divergent (D/C/V) questions the Explore-Invent-Apply (E-I-
A cycle).

Through the structured process oriented POGIL-like approach, which places a heavy emphasis on col-
laboration and co-construction of knowledge, we find that students displayed a strong and connected
understanding of the agile software development process and were able to place themselves in it. Their
sense of identity within SE was revealed by their perceptions of SE topics, and we find that the inquiry
based, constructivist learning approach through POGIL-like helped students relate themselves within the
individual software developer context as well as the larger software engineering context involving the
rest of the development team, product managers, project managers, stakeholders and end users. Previous
literature shows that a positive self perception of one’s ability was a key trait that helped retain students
(Almulla, 2020).

POGIL-like assigns students into four distinct roles- manager, presenter, recorder and reflector. Our
future work directions include understanding the impact of these specific POGIL-like roles in building
students’ confidence and motivation in SE, and whether other constructivist or collaborative pedagogies
have similar effects on student affect. We also intend to compare our findings with a traditional lecture
class with the same content and instructor, and delve deeper into how students’ impressions varied
between both approaches.

9. Acknowledgements
We would like to acknowledge and thank Dr. Justin Olmanson, Associate Professor, College of Educa-
tion and Human Sciences at the University of Nebraska-Lincoln for his generous guidance on qualitative
analysis techniques.

10. References
Agosto, D. E., Gasson, S., & Atwood, M. (2008). Changing mental models of the it professions: A

theoretical framework. Journal of Information Technology Education: Research, 7(1), 205–221.
Ainley, M., Hidi, S., & Berndorff, D. (2002). Interest, learning, and the psychological processes that

mediate their relationship. Journal of Educational Psychology, 94(3), 545.
Almulla, M. A. (2020). The effectiveness of the project-based learning (PBL) approach as a way to

engage students in learning. Sage Open, 10(3), 2158244020938702.
Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Students’ learning strategies and

motivation processes. Journal of Educational Psychology, 80(3), 260.
Anfara, V., Brown, K., & Mangione, T. (2002). Qualitative analysis on stage: Making the research

process more public. Educational Researcher, 31(7), 28–38.
Bean, J. P., Eaton, S. B., et al. (2000). A psychological model of college student retention. Reworking

the student departure puzzle, 1, 48–61.
Ben-Ari, M. (1998). Constructivism in computer science education. In (Vol. 30, pp. 257–261). ACM

New York, NY, USA.
Biggers, M., Brauer, A., & Yilmaz, T. (2008). Student perceptions of computer science: a retention

study comparing graduating seniors with cs leavers. ACM SIGCSE Bulletin, 40(1), 402–406.
Bloom, B. (1956). Taxonomy of educational objectives, handbook 1: Cognitive domain (2nd edition

Edition edition ed.). New York, NY, USA: Addison-Wesley Longman Ltd.
Buchanan, S. M. C., Harlan, M. A., Bruce, C., & Edwards, S. (2016). Inquiry based learning models,

information literacy, and student engagement: A literature review. School Libraries Worldwide,
22(2), 23–39.

PPIG 2022 162



Creswell, J., & Poth, C. (2018). Qualitative inquiry and research design: Choosing among five ap-
proaches (4th ed.). Sage Publications, CA.

CS-POGIL | DCV (Directed, Convergent, Divergent) Questions. (n.d.). Retrieved 2021-12-
30, from https://csPOGIL.org/DCV+(Directed,+Convergent,+Divergent)
+Questions

Dempsey, J., Snodgrass, R. T., Kishi, I., & Titcomb, A. (2015). The emerging role of self-perception in
student intentions. In Proceedings of the 46th ACM Technical Symposium on Computer Science
Education (pp. 108–113).

Emerson, R. M., Fretz, R. I., & Shaw, L. L. (2011). Writing ethnographic fieldnotes. University of
Chicago Press.

Foley, D. E. (2002). Critical ethnography: The reflexive turn. International Journal of Qualitative
Studies in Education, 15(4), 469–490.

Gopal, B., & Cooper, S. (2022). POGIL-like Learning in Undergraduate Software Testing and DevOps -
A Pilot Study. In Proceedings of the 27th Annual ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE) (p. Accepted).

Gopal, B., Cooper, S., & Bockmon, R. (2021). Industry partners’ reflections on undergraduate software
engineering students: An exploratory pilot qualitative study. In Proceedings of the 32nd Annual
Psychology of Programming Interest Group Workshop(PPIG).

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative
Health Research, 15(9), 1277–1288.

Hsu, L. M., & Field, R. (2003). Interrater agreement measures: Comments on Kappan, Cohen’s Kappa,
Scott’s π , and Aickin’s α . Understanding Statistics, 2(3), 205–219.

Ketelhut, D. J., & Schifter, C. C. (2011). Teachers and game-based learning: Improving understanding
of how to increase efficacy of adoption. Computers & Education, 56(2), 539–546.

Kussmaul, C. (2011). Process oriented guided inquiry learning for soft computing. In International
Conference on Advances in Computing and Communications (pp. 533–542).

Kussmaul, C., Mayfield, C., & Hu, H. (2017). Process oriented guided inquiry learning in computer
science: The cs-pogil & introcs-pogil projects. In ASEE Annual Conference and Exposition,
Conference Proceedings (pp. 1–7).

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage Publications, CA.
Mazur, E. (1997). Peer instruction a user’s manual. Prentice Hall.
Mega, C., Ronconi, L., & De Beni, R. (2014). What makes a good student? how emotions, self-regulated

learning, and motivation contribute to academic achievement. Journal of Educational Psychology,
106(1), 121.

Melnik, G., & Maurer, F. (2005, 06). A cross-program investigation of students’ perceptions of agile
methods. Proceedings - 27th International Conference on Software Engineering, ICSE05, 481-
488.

Peters, A.-K., & Pears, A. (2013). Engagement in computer science and it–what! a matter of identity?
In 2013 Learning and Teaching in Computing and Engineering (pp. 114–121).

Qualitative Data Analysis tool - HyperResearch. (n.d.). Retrieved from http://www
.researchware.com/products/hyperresearch.html (Last Accessed March
2021.)

Robson, C. (2002). Real world research: A resource for social scientists and practitioner-researchers.
Wiley-Blackwell.

Souza, M., Moreira, R., & Figueiredo, E. (2019). Students perception on the use of project-based
learning in software engineering education. In Proceedings of the XXXIII Brazilian Symposium
on Software Engineering (pp. 537–546).

Strauss, A., & Corbin, J. (2015). Basics of qualitative research: techniques and procedures for devel-
oping. Sage Publications, CA.

Tinto, V. (1997). Classrooms as communities: Exploring the educational character of student persis-
tence. The Journal of Higher Education, 68(6), 599–623.

PPIG 2022 163


	2022-PPIG-33rd-gopal



