
A Grounded Theory of Cognitive Load Drivers in Novice Agile Software
Development Teams

Daniel Helgesson
Dept. of Computer Science

Lund University
daniel.helgesson@cs.lth.se

Daniel Appelquist
Softhouse AB

daniel.appelquist@softhouse.se

Per Runeson
Dept. of Computer Science

Lund University
per.runeson@cs.lth.se

Abstract
Objective: The purpose of this paper is to identify the largest cognitive challenges faced by novices,
developing software in teams, using distributed cognition as an observational filter.

Paradigm: Design science

Epistemology: Pragmatist

Methodology: Case study

Method: Using grounded theory, ethnography and multi method data collection, we conducted an
observational study for two months following four 10-person novice agile teams, consisting of computer
science students, tasked with developing software systems.

Result: This paper identifies version control and merge operations as the largest challenge faced by the
novices, and provides a substantive theory generated from our empirical data explaining the observed
phenomena. The literature studies reveal that little research appears to have been carried out in the area
of version control from a user perspective.

Limitations: A qualitative study on students is not applicable in all contexts, but the result is credible
and grounded in data and substantiated by extant literature.

Conclusion: We conclude that our findings motivate further research on cognitive perspectives to guide
improvement of software engineering and its tools.

1. Introduction
By now it is well known that software development is a sociotechnichal phenomenon, rather than a
purely technical-technological one (Bertelsen, 1997). It is further well known that most, if not all soft-
ware development actvities are cognitively intensive (Sedano, Ralph, & Péraire, 2017) and rely on soft-
ware development tools. The human cognitive ability to process and harbour information is limited
(Miller, 1956), so for seemingly obvious reasons it would make sense to lessen the cognitive load on the
individual user.

But inspite of more than 50 years of investigation in regards to psychological and cognitive dimensions
and phenomena (Blackwell, Petre, & Church, 2019) softer, non-technical phenomena remain underin-
vestigated (Lenberg, Feldt, & Wallgren, 2015). Some twenty years ago Walenstein (2002) highlighted
the need of cognitive design theory as means to inform software development tool design and suggested
distributed cognition as a suitable foundation for such theory (Abend, 2008) building and theorization
processes.

In an attempt to more broadly understand the cognitive load induced from software development tools
and processes, we studied cognitive load drivers in large scale software development (Helgesson, En-
gström, Runeson, & Bjarnason, 2019) and found three clusters of drivers, namely tools, information, and
work & process. We also noticed that the temporal perspective of software development, particularly
revision control created specific problems. We have further described a set of ’perspectives’ (Helgesson
& Runeson, 2021) from which cognitive load in software development can be observed and analysed.

While Walenstein (2002) described software development from a distributed cognitive perspective, dis-
tributed, agile, software development software development has changed considerably over the past

PPIG 2022 197

twenty years, so in order to further advance the understanding of cognitive load in software engineer-
ing/development and agile software development as a distributed cognitive set of phenomena, we set out
to ethnographically (Sharp, Dittrich, & de Souza, 2016) study cognitive load drivers in agile software
development projects, using grounded theory (Charmaz, 2014) in conjunction with distributed cognition
(Hollan, Hutchins, & Kirsh, 2000).

As we hypothesise that some of the cognitive loads are compensated and mitigated through increased
experience and workarounds learned over the years, we choose to study novice software engineers (Höst,
Wohlin, & Thelin, 2005) in order to capture the novice point of view (Sharp et al., 2016). Our study
context is quite advanced for novices, an agile software engineering course, running for 14 weeks, in
which students work in 10-person teams in a simulated work environment, adhering to XP principles.
We observe four teams out of a total of twelve teams participating in the course.

Our research goals are to identify the most dominant cognitive load drivers and to observe differences
and similarities between groups with different characteristics. We combine the teacher role of on-site
customer with the ethnographer role, taking field notes of the observations. Further, we collect weekly
questionnaires, short reflection notes from the students, and arrange a focus group discussion with each
team. We use grounded theory practices in coding all the material, from which our theory emerges.

We conclude that version control, branching and merge operations are the dominant load factors in the
projects observed, and subsequently explore these phenomenons in detail. The remainder of the paper
is arranged as follows: background, method, analysis, literature review review, ethical consideration,
validity and discussion.

2. Background
2.1. Distributed Cognition
Not only is software engineering, as previously mentioned, a sociotechnical (Bertelsen, 1997) phe-
nomenon, it is also ’cognitively intensive’(Sedano et al. 2017). If we allow ourselves to theorize (Abend,
2008) in regards agile software development in teams, it is quite easy to envision the phenomenon as a
distributed network of cognitive agents solving cognitively loaded tasks using computers and software
development tools1.

Distributed cognition is a sub-discipline of studies of cognition in which the one of the traditional cor-
nerstones of cognition – “that cognitive processes such as memory, decision making and reasoning, are
limited to the internal mental states of an individual” (Hansen & Lyytinen, 2009) – is questioned and
rejected. Instead it argues that the social context of individuals as well as artefacts forms a cognitive
system transcending the cognition of each individual involved (Flor & Hutchins, 1991), i.e., a cognitive
system extending beyond the mind of one single individual (Mangalaraj, Nerur, Mahapatra, & Price,
2014). The concept was pioneered by Hutchins who studied the cognitive activities on the navigation
bridge of US naval vessels (Hutchins, 1995).

Hollan, Hutchins and Kirsh extended distributed cognition into the realm of human-computer interac-
tion as well as to some extent into software engineering, stating that a distributed cognitive process (or
system) is “delimited by the functional relations among the elements that are part of it, rather by the
spatial colocation of the elements”, and that as a consequence “at least three interesting kinds of dis-
tribution of cognitive processes become apparent: [a)] cognitive processes may be distributed across
members of a social group[;] [b)] cognitive processes may involve coordination between internal and
external (material or environmental) structure [and, c)] processes may be distributed through time in
such a way that the products of earlier events can transform the nature of later events.” (reformatted but
verbatim). (Hollan et al., 2000)

Despite the fact that the theory of distributed cognition was suggested as a fruitful approach for in-
vestigating and explicating phenomenon related to software engineering several decades ago – Flor

1The dissertation (Walenstein, 2002) makes for excellent indepth reading on the matter

PPIG 2022 198

and Hutchins empirically studied pair-programming from a distributed cognition perspective as early as
1991 (Flor & Hutchins, 1991) – few examples exist of actual software engineering studies using dis-
tributed cognition as theoretical underpinning. Mangalaraj et al. (2014) highlighted Sharp and Robinson
(2006), Hansen and Lyytinen (2009), and Ramasubbu, Kemerer, and Hong (2012) as “the few notable
exceptions” of extant software engineering research utilising Distributed Cognition. To this list we
would like to add Walenstein (2002), a recent study by Buchan, Zowghi, and Bano (2020) as well as
Sharp and Robinson (2004), Sharp, Robinson, and Petre (2009), Sharp, Robinson, Segal, and Furniss
(2006), Sharp, Giuffrida, and Melnik (2012), Sharp and Robinson (2008) and Zaina, Sharp, and Barroca
(2021).

A recent “exploratory literature review” on “Cognition and Distributed Cognition” is presented by
Begum (2021), where the authors reached a similar conclusion to ours – that despite its’ intrinsic
promises distributed cognition remains largely unused in software engineering.

3. Method
3.1. Grounded theory
Grounded theory (GT) is a systematic and rigorous methodological approach for inductively generating
theory from data (Glaser & Strauss, 1967) (Charmaz, 2014) (Stol, Ralph, & Fitzgerald, 2016). Stemming
from social sicences, GT was developed by sociologists Glaser and Strauss, as a qualitative inductive
reaction to the quantitative hypotetico-deductive reserach paradigms dominant in the 1960’s. The main
difference, apart from being qualititative rather than quantitative, is that the purpose of GT aims at
generating theory, rather than to be used as an instrument for validation, or testing, of theory (Stol et al.,
2016). It is iterative and explorative (Charmaz, 2014) in nature, and thus suitable for answering open
ended questions such as what’s going on here? (Stol et al., 2016).

We primarily opted for Charmaz GT handbook (Charmaz, 2014) as guidelines, using Bryant (2017) as
a complementary perspective (in addition we also consulted earlier works by Glaser (1978),(1992)),
specifically using grounded theory in conjunction with ethnography (Charmaz & Mitchell, 2001) –
an approach that gives “priority to the studied phenomenon or process – rather than the setting it-
self ” (Charmaz, 2014). The ethnographic approach allows for exploring not only what practitioners
do, but also why they do it (Sharp et al., 2016). Core elements in the ethnographic approach is the
empathic approach to describe another culture from the members point of view and the intrinsic analyt-
ical stance (Sharp et al., 2016). As with grounded theory, modern ethnography also stems from social
sciences (Sharp et al., 2016). Not extensively used in Software Engineering (Sharp et al., 2016), it has
however been used to study agile teams (Sharp & Robinson, 2006)(Sharp & Robinson, 2004).

3.2. Research goals
Central to ‘original’ Glaserian GT and Charmaz Constructivist GT is that the actual/final research ques-
tions are not defined up front. Glaser suggests that the researcher should start with an area of inter-
est (Glaser, 1992) (Stol et al., 2016), while Charmaz suggestion is that the researcher should start with
initial research questions that evolve through the study (Charmaz, 2014) (Stol et al., 2016). We decided
to pursue two open ended research goals:

A) To identify the most dominant cognitive load drivers from the novice point of view, and
B) To chart what differences or similarities that can be observed between the different group compo-

sitions.

3.3. Case description
The course that we used as study object is a mandatory course for sophomore computer science2 students
aiming at teaching practical software development in teams using agile methodology, presented in detail
by Hedin, Bendix, and Magnusson (2005). The course runs for two terms (14 weeks) and consists of

2Translations of educations are difficult, in international terminology ’Computer Science’ is as close as we can translate
it. It is a five year master (engineering) program mostly aimed at software rather than hardware. The program resides at the
Faculty of Engineering, and the program responsibles reside at the department of Computer Science.

PPIG 2022 199

one study block (seven weeks) consisting of lectures and practical lab work, and one study block (seven
weeks) in which the students work together as 10-person teams, largely adhering to XP principles (Sharp
& Robinson, 2004) developing a software product. All teams develop a software system based on the
same basic stories, but the stories are somewhat open ended, leaving room for differentiation. The teams
are coached by two senior students undertaking a course in practical software coaching, that runs in
parallel for the same duration. PhD students serve as customers, for 3-4 teams each.

The teams develop their system for a term (seven weeks) in 6 full day sprints, each preceded by a two
hour planning session in which the cost/effort for the user stories are estimated by the students and
prioritised by the customer. The students make 3–4 incremental releases during the project, roughly
with a cadence of one release every two sprints.

3.4. Design considerations
We opted for a flexible case study design (Runeson, Höst, Rainer, & Regnell, 2012), to allow for im-
provisation based on observations and forces outside of our control (which once you take research into
the wild are plentiful). Once in the field, flexibility becomes utterly important (Sharp et al., 2016) as the
researcher must be ready to adapt to changing situations quickly.

We had a strict time box for our field study, since the course executed over the duration seven weeks with
one day sprints on Mondays, following a two hour planning session on the Wednesday before. Apart
from the fixed schedule for observations we also had to take into account the work load of the students
when injecting experiments and eliciting interviews. We had the ambition to cause as little disturbance
as possible. In order to achieve triangulation we opted to collect as many data sources as possible.

We also decided to use distributed cognition (Hollan et al., 2000) as initial lens, or filter, for our observa-
tions. Distributed cognition, further described in Section 5, is a branch of cognition studying cognitive
processes distributed in groups rather than cognition from the individual perspective. While the use of an
initial lens could be thought of by some readers as contradictory to the central tenet in GT, we hold this
(potential) critique as moot. We were targeting observations of cognitive load drivers in interconnected
network of people and digital tools, so we needed some starting point for our observations.

3.5. Student selection
Firstly we anonymously picked 14 student candidates, based on a high grade (grade average in excess
of 4.5 on five grade scale, where pass is denoted as 3) in the first two programming courses, and a lower
grade (i.e. pass or incomplete/fail) grade in multidimensional calculus. Secondly we anonymously
picked 14 student candidates based on a high grade (grade higher than pass on five grade scale, where
pass is denoted as 3) in multidimensional calculus, regardless of their grade in programming courses.

The two anonymous candidate lists were then sent to the course responsible who then created one exper-
imental group each out of the two candidate lists and two randomly selected groups. After this process
we had four groups in total. It should be noted that the authors at no point in time were informed of what
group consisted of what selection.

3.6. Consent
Together the course responsible and the first author ultimately reached the conclusion that the optimal
solution (in regards to time constraints and complexity) was to inform the students in the four groups at
the start of the course that we would be carrying out research throughout the course, describe the overall
purpose/general research goal of the study, that we were looking at the groups and not the individual
members and offer any student not willing to participate to change groups prior to the first sprint. No
student asked to exchange groups.

In every interaction that was recorded or photographed, we actively asked every student participating
for permission, while pointing out that everything expressed in the exchange would be anonymous and
confidential, and that no recordings would be distributed outside of the three researchers participating in
the study. For further ethical considerations, see Section 6.

PPIG 2022 200

3.7. Data collection
The first and the second author followed all planning sessions in parallel. As we had to monitor sessions
in parallel we opted to alternate between observing in pairs and by ourselves. All in all we covered
24 planning sessions where the first author actively participated in the meetings acting as customer on
site providing students with clarifications of stories, priorities etc, while the second author passively
observed. After each session we spent, roughly, 15 minutes discussing what we had observed. Field
notes were written by hand, and after the termination of the field work compressed in memo form.
The first author actively participated in all full day sprints while acting as customer on site. The four
teams were situated in two computer labs, allowing for observation of two teams simultaneously. Field
notes were written by hand, and after the termination of the field work compressed in memo form. We
specifically opted to not be part of breaks, lunch hour etc. for respect of the students integrity. Since our
research focus is the phenomenon of cognitive load from a team perspective, rather than team work in
general, we do not see this as a threat to our observations.

In addition, we added a weekly questionnaire to be filled out by each student after every sprint (all in
all 4*10*6 = 240 questionnaires) in order to follow up on what we had observed so far throughout the
project. The first two weeks the questionnaire targeted sources of information and information tools used
by the students. In the third and fourth questionnaire we introduced check boxes and free text space,
allowing the students to express what they perceive as the major problems they had been challenged by
throughout the project. In the fifth questionnaires questions were added to capture the outcome of one
of the experiments, see Subsection 3.8.2. The final questionnaire was extended with questions regarding
team spirit and over all satisfaction. The aggregated response rate for all 24 sets of questionnaires (6 for
each team) were 93% (out of the 240 questionnaires we handed out we got 223 in return, and no single
set had a lower response rate than 8/10).

Further, as a requirement of the course all students wrote short individual reflections after each sprint, as
a retrospect exercise. After the course we aggregated these pages, anonymised all content and created
one .csv file per team with the content broken down in line-by-line format for open coding.

After the final sprint we held one hour long focus group discussion with each team. The discussions took
place in two by two parallel sessions, Two instances were held by the first author, one by the second and
third author collectively and one by the second author. In order to keep the different sessions coherent
and comparable we followed a semistructured manuscript containing four themes we had selected as
emerging concepts from our observations. We used pair-wise post-it discussions, followed by group
discussions where each pair reflected on what they had come up with. The post-it stickers were collected,
numbered and digitized. Each session was also recorded using video and sound.

3.8. Field experiments
Inspired the reasoning on ethnographically natural experiments by Hollan et al. (2000), we decided
to extend our data set with the result and observations from three minor field experiments. These
were dressed as improvised exercises, a part of the overall course concepts, where unplanned customer
changes could take place (Hedin et al., 2005). One of them had been used by first author in previous
years, the others were new.

3.8.1. Field experiment – group constellation
Our first experiment consisted of creating four teams with different member compositions, with the
purpose to see what differences, if any, we could observe during the observation study (and through the
other data sources). See Subsection 3.5.

3.8.2. Field experiment – exploratory testing
The second experiment consisted of assigning the students with a surprise story in preparation for the
fifth sprint. The story consisted of little more than the instructions to: execute roughly 1 hour of ex-
ploratory user tests of the system under realistic race conditions using four team members documenting
the issues encountered, and further to reflect on the experience in their weekly reflections (that all stu-
dents fill out after each sprint). The story was handed out during the planning session the week before

PPIG 2022 201

the full day sprint during which it was planned. We collected information of the activity from question-
naires (Q5/Q6) and from discussions with students and coaches during the following sprint and planning
session.

3.8.3. Field experiment – merge-back
The third experiment consisted of the request to implement two sets of changes, in two separate files,
and upon completion of the first task request a merge-back and recreation of the first release. Each team
was handed a story card describing the two code blocks to be implemented first thing in the morning
during the final planning session leading up to the final sprint. Each team was asked to notify their
customer upon completion of the task. In order not to compromise that functionality/integrity of their
respective systems the two code blocks were dummy snippets that were commented out. The experiment
was documented using video and sound recording.

3.9. Analysis
Given that we had a limited time window for our observation, we did not have a lot of time for analysis
during the field work. We exchanged notes and discussed our observations over lunch breaks. After the
field work was completed the first and second author started a more formal analysis stage.

Initial coding (Charmaz, 2014) – the first and second author each performed open line-by-line coding of
the student reflections and the post-it stickers. We then exchanged our reflections in short memo form.
In parallel, the first author did an initial overview of the contents of the questionnaires.

Focused coding (Charmaz, 2014) – the first and the second author had a two day session in which
the questionnaires, focus groups post-it stickers and student reflections were analysed from multiple
perspectives and the parts that we found relevant was extracted and documented digitally. We also
extracted relevant ‘soundbites’ from free text answers, and digitised them. The findings were condensed
in a short memo.

Theoretical coding (Charmaz, 2014) – the theoretical coding was executed by the first author, using
Glaser’s ‘6C’-coding family (Glaser, 1978) as a starting point. The work was done in memo form and
visualized on an A1 sheet using postit stickers. After a few iterations of coding, sketching and memoing
a theory was emerging. The first and third author had a one hour session in which the theory was
discussed from various angles and a few of the constructs were redefined. After this the first author did
a minor rewrite of the theoretical coding memo.

3.10. Theoretical saturation
Having iterated through open coding and focused coding of the data set, we saw the need of further
saturation in order to provide some more insight from the members’ point of view. In order to do so,
we went through the recordings of the focus groups in order to provide some additional insight. Finally
we reached out to a handful of students whom previously agreed to do minor follow up interviews. We
held three short (15–20 minutes) open interviews specifically aimed at understanding what the students
perceived as tool interaction related issues. The interviews were conducted by the first author and were
documented by additional field-notes. All quotes and findings were reread to the subjects at the end of
these interviews.

3.11. Literature review
In its original form, research questions in GT studies should emerge from the research, not be defined
apriori (Stol et al., 2016) and extensive literature should be avoided prior to the emerging of theory. That
being said, Charmaz takes a more pragmatic stance on literature and research questions and emphasises
the iterative nature GT, thus allowing for initial research questions that evolve through the research
project as well as abductive reasoning on extant literature, recommending a preliminary literature review
“without letting it stifle your creativity or strangle your theory” (Charmaz, 2014).

As a consequence we did an initial, rather limited, literature study of Distributed Cognition from a
Software Engineering perspective. Following the coding cycles we did an additional, or final, literature

PPIG 2022 202

A.
Phenomenon

B.
Context

C.
Agile intrinsics

D.
Cause

E.
Confounding

factors

F.
Consequences

G.
Noted

interventions

Figure 1 – Generated theory of the causal and consequential dimensions in regards to version
control, branching and merge operations encountered in the projects.

review on the central phenomenon of the theory we generated, i.e. Git, version control and merge
operations from a user perspective. See Section 5 for findings.

4. Analysis
This section presents the theory generated from the dataset. Based on the findings from open and fo-
cused coding of our data set, the emerging concept we focused on was issues regarding version control,
branching and merge operations.

For the first attempt at formulating the theory, a theoretical conceptual explanation of what we ob-
served, we based our theoretical coding on Glasers 6 C-coding family (Glaser, 1978) (Stol et al., 2016),
while observing Thornberg and Charmaz reflection that the researcher should avoid being hypnotized
by Glaser’s coding families (Thornberg & Charmaz, 2014). This is analogous to Glasers argument that
all codes should earn (Glaser, 1978) their way into the theory. Thus, we used the 6 C’s3 makes for
excellent indepth reading on the matter as a starting point, and allowed for modifications throughout the
theoretical coding phase.

A conceptual rendering of our generated theory of the issues regarding version control, branching and
merge operations encountered is illustrated in Figure 1. The center bottom rectangle describes the
core phenomenon, version control, branch & merge issues, while the other codes are represented by
surrounding rectangles. Cause, correlation and effect are represented by arrows. Context is represented
using dotted arrows. For each code a corresponding subsection is found below. Along with the analysis,
the theory is detailed in Figure 2.

Throughout the analysis section we provide examples of ‘quotes’ from the data set. ‘S’/‘I’ denotes
interview subject and researcher respectively. We have added emphasis for clarity and occasional further
clarifications within [hard brackets].

4.1. Phenomenon
Throughout our observations (field notes) and our questionnaires we noted that version control, branch-
ing and merge operations caused a disproportionate amount of loss in productivity and time. The ques-
tionnaires for all teams systematically indicated version control, branching and merge conflicts as the
most disruptive challenges encountered throughout the project, and as a consequence this is the phe-
nomenon we chose to explore.

3First author note – this was my first real attempt at ’pure’ grounded theory. Having made another couple of attempts,
to a varying degree of success, I make the casual observation that a ’grounded theory’ consisting of more than 6-7 ele-
ments/constructs is very hard to explain to an audience. This is a perfect analogy to/example of Miller (1956). It is very
hard for the human mind to process more than 6-7 visual elements simultaneously. So, if there are more constructs than the the
magical number seven I humbly suggest breaking up the theory in subsets. If not, it will be very hard to convey the message
visually – and it will in all likelihood be very hard to push through peer review...

PPIG 2022 203

A. Phenomenon
Version control, merge and branching

B. Context
Agile software development with novice

software engineers

C. Agile intrinsics
1. Work in parallel
2. Work iteratively

3. Dynamic design and vague requirements

D. Cause
1. Tool support and functionality

2. Tool integration
3. Tool complexity

4. Lack of mental/conceptual model

E. Confounding factors
1. Lack of documentation
2. Lack of communication

F. Consequences
1. Lack of understanding merge conflicts

2. Absence of branch strategy and structure
3. Lack of project situation awareness

G. Noted interventions
1. Creation of 'git cheat sheet'

2. Improved documentation
3. Creation of basic branch process

4. Improved communication
5. Experimentation with different IDEs

Figure 2 – Generated theory from Figure 1, further extended with the detailed codes from the anal-
ysis.

– E.g.: “Git/Merge – We are unsure of how to use git properly” (from student questionnaires – in
response to what has been the biggest hurdle faced during the project).

We note that a merge operation in essence consists of a synthetical operation in which multiple
sources/instances of software code is synthesised into a new instance, in an abductive process similar to
what Walenstein (2002) describes as ”the gulf of synthesis”.

4.2. Context
We define the context from which our observations are extracted, and in which they are valid, as that
of agile software development teams, consisting of novices, using Git. Admittedly, this could result
in a rather narrow validity window in terms of generalization. However, in our experience (both the
first and second author has 15+ years experience of professional tool driven software development in
large/distributed software projects) this observation, practitioners struggling with Git is commonplace
in industry. Further, using novices as study objects would rather reveal cognitive challenges, as these
challenges are not mitigated by trained behavior, learning effect or status quo bias.

We created our data set from observing and interacting with four different teams of novice software
developers in parallel. All teams were using XP, and developed their system using the same basic sto-
ries/requirements (see Subsection 3.3 for details). While tool chain set up and development environment
(IDE) differed somewhat between the teams, all teams used Git hosted by Bitbucket for version control
(albeit with different branch strategies).

In light of the observed lacunae in extant software engineering literature, we note that version control
from a user perspective is an area not thoroughly studied in the research community. Those few studies
we found systematically indicate that our observations are valid in a wider context.

4.3. Agile intrinsics – root cause & driver
The iterative and parallel aspects of the nature of agile software development, Agile intrinsics, are from
our observations, the identified underlying Root cause of the observed merge conflicts. In order to
achieve some granularity we further break this construct up into three different subcodes: (Work) in
parallel, (Work) iteratively and Dynamic design and vague requirements, since they are related in terms
of root cause but have quite different consequences. As indicated by the intrinsics in the main category,
these traits are inherent (largely by design) in the nature of agile software development. While these root
causes could be compressed into one code, we feel that they are not interchangeable and each deserve
a closer description. For further clarity we added an additional subcode, Observed driver, as means to
further clarifying the underlying nature of these codes.

PPIG 2022 204

4.3.1. (Work) in parallel
Observed root cause: When starting up the project, the code base is very small, and different pro-
gramming pairs are developing, and modifying the same code/classes/files, creating dependencies and
diverging implementations ultimately leading to merge conflicts. While this to some extent was miti-
gated by adopting rudimentary branch strategies, the problem persisted throughout the projects.

We note that it appeared hard for the developers to find out who did what, when and why?, ultimately
leading to a lack of understanding of implementation details, or a micro perspective, thus making sub-
sequent merge conflicts harder to resolve. We also noted that this caused the developers to implement
their own variations of similar methods (e.g. utility methods). E.g.:

– “Trying to merge code that someone else has written.”

(from student questionnaires and focus groups in response to what they found being difficult during their
projects).

Observed driver: Diverging implementations leads to conflicting implementation details, further re-
sulting in merge conflicts.

4.3.2. (Work) iteratively
Observed root cause: The iterative nature of the development results in constantly shifting implemen-
tation details and this subsequently drives merge work. The constant change in code leads to a lack of
understanding from a micro perspective, reimplementation and duplication of code as different develop-
ment pairs reimplement existing functionality. E.g.:

– “Parts of code unknown, having to interact with code that someone else has written, better after
refactoring.”

(from student questionnaires and focus groups in response to what they found being difficult during their
projects).

Observed driver: Refactoring implementation leads to changing implementation details, further result-
ing in merge conflicts.

4.3.3. Dynamic design and vague requirements
Observed root cause: Since there is no set architectural design/framework, nor a complete set of re-
quirements or user stories, in the beginning of the projects, there was no cohesive collective goal for the
developers. Further, architectural changes drives extensive refactoring and results in subsequent merge
conflicts. Despite the fact that this is an inherent feature of XP – “XP is a lightweight methodology
for small-to-medium-sized teams developing software in the face of vague or rapidly changing require-
ments” (Beck, 1999) – it is nonetheless something we noted as a systematic cause of refactoring and
merge conflicts. E.g.:

– “Hard to change data structures. This causes merge conflicts and bugs. Improve communication
[within the team]?”

(from student questionnaires and focus groups in response to what they found being difficult during their
projects).

Observed driver: No set design at the beginning of projects leads to refactoring of structure and chang-
ing of architecture, resulting in merge conflicts

4.4. Observed cause
This part of the analysis provides a reasoning on our observations on the observed causes of merge
incidents.

4.4.1. The impact of tool support and tool functionality
Throughout the study we noted that the students were quite opinionated about functionality and support
of the different tools and how well they were integrated. All teams started their respective projects using

PPIG 2022 205

Eclipse and Git hosted on Bitbucket. Out of the four teams, two ultimately migrated from Eclipse to
another IDE; intelliJ in one case and VSCode in one case.

When discussing tools during focus groups the importance of the user support the developers experi-
enced became obvious. We noted that ease of use, intuitive interaction and visual support and offloading
was something the students noted as very important in terms of reducing cognitive load. This is il-
lustrated below in an excerpt from a focus group dialogue between three students (SI–SIII) and the
interviewee (I):

SI: – “Many had problems seeing what changes that were being made, that is when you fetch; it
might be related to Eclipse [integration with Git], it became better with VSCode, with the colours
[indicating visual offloading], the visual, to be able to understand what has happened.”

I: – “But what experience have you had in regards to the tool support you have had in order to solve
merge conflicts?”

SI: – “Eclipse was really messy.”
SII: – “...it was really hard to see what changes were coming from where – [extended pause, thinking]

– and I think the colours in VSCode are really good [indicating visual support]. You really see,
visually, what is what.”

SIII: – “...when we were using Eclipse we switched to using the terminal [use of Git through command
line interface (CLI) instead of IDE integration] instead, it just feels a lot easier.”

(Focus Group, excerpt from video recording T@12.43).

The importance of visual support became even more obvious during saturation:

S: – “The merge support in VSCode is graphical and easy to understand – it is intuitive.”
S: – “The merge support in VSCode is very clear, it provides help on resolving the conflict, it shows

<source code 1> and <source code 2> in the GUI and it is simple to choose by clicking a button.”
S: – “intelliJ is actually, in my opinion, better than VSCode. It gives even better and more visual

merge support.”

(Field notes – saturation)

4.4.2. Tool integration
We decided to further break down the analysis of the tool support further, in order to be able differentiate
different angles of the experience of the students. We noted that the actual integration of Git in the IDEs
was considered quite important, and a contributing factor when it came to changing IDE.

S: – “The graphical integration of Git in Eclipse is difficult to understand.”
S: – “Eclipse is complicated in terms of Git integration, and it is easier to use git through a terminal

than through Eclipse.”
S: – “The integration between Git and VSCode is superior to that of Eclipse.”

(Field notes – saturation).

4.4.3. Tool complexity
The actual importance of tool complexity came to some surprise to the first author. We observed several
reflections on the intricacies and complexities of Git in the dataset. We found compelling evidence
that the complexity of Git was indeed a main cause of concern and cognitive load for novices, but the
intricacies of Git was not the only cause of concern – the complexity of the IDE was also a definite issue
and cause of confusion.

S: – “Version Control – Git is very difficult.”
S: – “What would make Eclipse better? Better merge support and better overview, making it easier

to find functionality.”
S: – “VSCode feels simpler, with less functionality but it is a lot less overwhelming. It has a lot better

learning curve.”
S: – “Eclipse is complicated and it is difficult to understand the structure.”

PPIG 2022 206

(Field notes – saturation).

Somewhat counter intuitively we also observed the following reflections on Git the command line inter-
face:

S: – “Git/CLI [in terminal] is good because it looks the same in every environment.”
S: – “Git/CLI [terminal] is good because all Git online resources describe Git through CLI, so it is

a lot easier to copy a line of commands and paste it into the terminal than to try do do the same
thing through a GUI.”

(Field notes – saturation).

4.4.4. Lack of mental/conceptual model of version control and branch structure
Based on the outcome of the merge experiment (Subsection 3.8.3), which we considered a trivial
Git/branch operation, we noted that the students’ understanding of reasonably straight forward branch
operations in Git was somewhat limited. Out of the three groups that did the experiment (one team
dropped out because of time constraints in their project), no one came up with a viable solution (albeit
they came up with interesting and manually labour intensive ways to approach the task). At the end of
the time-slot given for coming up with a solution, the first author provided a hint of the form “Well,
maybe you should google git squash and git cherry pick?”. Subsequently all three teams adequately
solved the exercise in a matter of minutes.

4.5. Confounding factors
4.5.1. Lack of documentation
We noted that a systematic lack of documentation (i.e. code comments, commit messages, design doc-
umentation) plagued the groups throughout their respective projects. This added to the lack of under-
standing the merge conflicts. We also noted that the students became aware of these aspects and, to a
varying degree of success, tried to adress these issues at the later stages of their projects, see Subsec-
tion 4.7. Because of space limitations and the secondary nature of this code we have omitted any actual
quotes, but the issues were systematic and affected all teams.

4.5.2. Lack of communication
We noted that a systematic lack of communication within the team (e.g. abscence of standup meetings
and use of story boards) plagued the groups throughout their respective projects. This added to the
lack of understanding the merge conflicts as well as a lack of understanding the current project status.
Further it added to waste and loss of team productivity when different pairs were working on the same
task in parallel without knowing this. We also noted that the students became aware of these aspects
and, to a varying degree of success, tried to address these issues at the later stages of their projects,
see Subsection 4.7. Similar to the above, we omitted actual quotes, but the issues were systematic and
affected all teams. One group started using Trello instead of a physical story wall, while the others
continued using story walls.

4.6. Consequence
This part of the analysis provides a reasoning on our observations of consequences of the phenomenon
under study.

4.6.1. Lack of understanding merge conflicts
The systematic lack of understanding of merge conflicts surprised us, and it became the focus of the
analysis. These merge conflicts obviously lead to a loss of productivity, but it is not only limited to that.
When going through the focus group material and the student reflections, we saw multiple examples of
negatively loaded wording, indicating fear, insecurity and stress. We find this to be clear indicators that
issues with merge conflicts not only cause a loss of productivity in terms of linear time, but also that the
absence of the needed tool support causes considerable cognitive load and stress on the developers.

S: – “It is frightening with a Wall of Text – merge conflict/difference [indicating a very complicated
merge] when in reality there is only a minor difference in a character or so [e.g. trailing space etc.].
In VS code you see both versions and you can simply choose what code [snippet] you want.”

PPIG 2022 207

S: – “You don’t know how to revert changes in Git you don’t know if you will accidentally [loss of
control] replace/delete something [important]... you need to dare to use Git...”

S: – “uncertainty results in many [of us] finding it stressful with merge conflicts... when there is a
"merge message" that just appears you don’t really know what it means - will it result in overwrite
- this makes it feel difficult, perhaps more so than it actually is...”

(from Field notes – saturation, questionnaires and focus group interaction).

4.6.2. Absence of branch strategy and structure
In addition to the systematic lack of understanding merge conflicts we also noted that branching itself
was quite difficult for the teams. They had a hard time coming to grips with when to use separate
branches (e.g. for bug fixes, tasks, stories and releases), when to close superfluous branches and branch
naming conventions.

S: – “It would have been better if we had used story specific branches.”
S: – “We did not have a strategy for branching from the beginning [of the project].”
S: – “We should have closed branches that were no longer in use.”

(from Field notes – saturation, questionnaires and focus group interaction).

4.6.3. Lack of project situation awareness
Further we noted that there were issues in regards to understanding the current project situation/status.
This included multiple pair working on the same tasks, different pair implementing similar utility func-
tions, a lack of understanding of components in the projects, and ultimately not knowing whom to ask
about implementation details.

S: – “Lack of communication – many of the problems we are facing would be solved if we would
communicate better.”

S: – ’Architecture – attempts to communicate architecture changes during iteration without docu-
mentation resulted in a loss of micro perspective Only after an architecture spike was the issue
finally resolved and understanding was shared.’

S: – “People working on the same issue – sometimes people work with solving the same problems
without knowing it/each other.”

S: – “Lack of communication – this lead to several interesting issues during sprint III where we went
in different directions regarding architecture.”

(from Field notes – saturation, questionnaires and focus group interaction).

4.7. Noted interventions
We here describe the interventions implemented by the different teams as means to circumvent the issues
they encountered in their projects. On account of space limitations we omit the qualitative excerpts and
keep the description short.

4.7.1. Creation of “Git cheat sheet”
We noted that the teams, after the first few sprints, realized that they needed a common manual for (and
understanding of) basic Git operations. This was in most cases implemented as a spike by a pair of team
members in between sprints. Further, we saw an interesting example of knowledge transfer within the
team.

4.7.2. Improved documentation
We noted that the all teams throughout the project started realising the importance of documentation.
The observed interventions included a systematic way of describing commits (i.e. pointing out what
story or what task had been worked on, rather than the initial, rather void, messages like ’bugfix’, ’gui
implementation’ etc.). We also noted that the teams started documenting the design of their architectures
(using UML) and user interfaces (sketching on A3 paper). In addition we also noted that, while strug-
gling with it in practice, all teams realised the importance of code documentation and made considerable
attempts at documenting their code properly.

PPIG 2022 208

4.7.3. Creation of basic process for branch/cm/releases
We noted that all teams, after a few sprints started to develop a basic branch and configuration man-
agement process. This consisted of a more rigorous – less ad hoc – naming convention of branches,
systematisation of main branch integration, and use of separate branches for stories, amongst other
things. We do not consider the actual details as important as the observation that the teams, themselves,
organically came to the conclusion that they needed a more systematic approach in regards to branching
and configuration management. In addition we also noted that all teams, having experienced the value
of explorative testing in the experiment presented in Subsection 3.8.2, started doing so well in advance
of their releases.

4.7.4. Improved communication
We noted that all groups became aware of the need of improved communication. One team started using
Trello as means of establishing a sound project overview. All teams further noticed the importance of
standup meetings, and systematically started running more frequently.

4.7.5. Experimentation with different IDEs
As previously described we noted that two of the teams started exploring other IDEs in order to circum-
vent their perceived issues with Eclipse.

5. Literature review
5.1. Git & Merge
Our literature findings in regards to user experience of Git were surprisingly limited. What we could find
was three relevant papers: Church, Soderberg, and Elango (2014), Perez De Rosso and Jackson (2013),
and De Rosso and Jackson (2016).

We note that these papers, to some extent, validate our findings that Git is a very complex tool to use, and
our conclusion is that there is considerable lacunae in literature in this regard. Future research should
include a more thorough literature study in regards to Git and merge tools.

5.2. Eclipse and tool complexity
The issues related to tool complexity among novices are largely substantiated by extant literature –
Moody (2009) discussed the different levels of support needed by novices and experts when it comes
to visual languages based on Cognitive Fit Theory (Vessey, 1991) (Vessey & Galletta, 1991) (Shaft &
Vessey, 2006). We can also see the same patterns in research on expertise by Chi et al. (1981) (2014).
Further, Storey et al. (2003) as well as Rigby and Thompson (2005) have specifically described issues
of novices in regards to Eclipse.

6. Ethical considerations
With the study focus on groups rather than individual students, there was no legal need for formal ethical
hearing under the jurisdiction under which this research was conducted, however we did submit and
register a description of the study to the local ethics board. As the course is graded Pass and Fail only,
and the only way students to fail is by considerable absence, we felt that there was no major issue with
conflicting roles of researcher/teacher for the first author. In addition, our presence during sprints and
planning sessions allowed the student groups more teacher time than what they would have experienced
otherwise. Further, we stress again that all students were systematically offered to retire themselves
from the groups being observed.

Liebel and Chakraborty (2021), present an updated mapping study on ethical issues in empirical software
engineering studies using students, and highlight that study conditions and power relations between
students and instructors are special areas of concern. We would like to stress that the consent to enter
the study was informed, and we feel that we presented all students with the systematic ability to retire
from the research, that we have been transparent with the conditions and that the power relations were,
in reality, unaffected by the study condition since the role of the researchers were to act as customers in
the actual projects.

PPIG 2022 209

The experiments we exposed the students to had been used as improvised project disturbances embedded
in the course design by first author in previous years and appeared to make a sound addition to the
learning outcome of the students. Based on the fact that the learning outcome of the students was not
compromised, that all data was collected with consent and anonymously, that the findings will benefit the
students of the next instantiation of the course and the very high course evaluation grades the students
awarded the course post completion, we do not feel that we have any ethical qualms in regards to the
study.

7. Threats to validity
The use of students as basis for research can be controversial (Höst, Regnell, & Wohlin, 2000)
(Svahnberg, Aurum, & Wohlin, 2008) (Henrich, Heine, & Norenzayan, 2010) from a generalisation
perspective as well as from student integrity and learning perspectives. In terms of generalisation, Höst
et al. highlight that students working under life-like circumstances serve can function as a reasonable
proxy for real life settings/practitioners (Höst et al., 2005). In this study we selected students to capture
a novice point of view, thus providing us with a different perspective of causes of cognitive load drivers.
Further, by acting as customers on site we were able to take a participatory observation position allowing
us to some extent ‘blend’, while retaining an analytical ethnographic stance (Sharp et al., 2016).

In addition to discussing ethical dimensions of software engineering carried out on student popula-
tions, Liebel and Chakraborty (2021) also discuss the scientific value of such studies. Highlighting
that research conducted using qualitative methodologies such as case studies, observational studies and
ethnography the actual case context is a “deciding factor” and therefore cannot generally be separated
from the “studied phenomenon”. That being said, Stol and Fitzgerald (2018) highlight the value of
knowledge seeking research approaches such as ethnography using the work by Sharp and Robinson
(2004) as an example of such research.

Somewhat tounge-in-cheek (and not drilling into the taxonomy of elephants, which is extensive and
contextually important), we respond to the elephant/jungle metaphors provided by Stol and Fitzgerald
(2018) by stating that if you want to study juvenile elephants ridding themselves of bug infestation,
and the methodologies deployed in such an activity you probably want to do it in the jungle4. If you,
on the other hand, want to observe software development teams consisting of juniors solving software
development issues, a computer hall at a university is, probably, about as ideal (and actually natural) as
research environments come.

The procedures for the planning, data collection and analysis are reported in detail in Section 3.

GT studies are commonly evaluated based on the following criteria (Charmaz, 2014) (Stol et al., 2016):

Credibility: Is there enough data to merit claims of the study? – This study relies on the data set from
one case study. The data set includes interviews, focus groups, observations and written reflections. The
data set is quite extensive.

Originality: Does the results offer new insight? – While cognitive load is not an unknown phenomenon
in software engineering, we note that merge operations seem disproportianetly troublesome/difficult.
We note a research gap when it comes research on version control and merge operations.

Usefulness: Is the theory generated relevant for practitioners? – This study generates a theory that
offers one explanation of how merge operations and branch work becomes difficult in projects. This can
be used for reasoning on cognitive load in software engineering. The main contribution, in our opinion,
is the observation of merge phenomenon and version control issues and the corresponding research gap.

Resonance: Does the theory generated resonate among participants/informants? – While the final
rounds of data collection was shut down prematurely on account on the pandemic situation, we were

4Technically, we would, for (obvious) visibility and (equally obvious) safety reasons, prefer open plains rather than the
jungle for observational studies. We will however not push the elephant metaphor further beyond the casual observation that
while novice software developers might charge, they are far less likely to kill you....

PPIG 2022 210

fortunate to gain access to four of students (roughly 10 percent of the population) whom participated in
the study. These accepted to join a small follow up session in order to allow us to gauge the resonance.
This session was held in a focus group format, and the students had prior to this: a) participated a second
time in the course this time acting as ’coaches’, and b: read a previous version of this paper including
the theory. They found the paper and the theory to be a sound description of what had transpired, and
noted that the measures taken by the teachers in order to change the course was very beneficial for the
students.

We take a pragmatist (Bryant, 2017) epistemological position in this paper. Our aim is to provide a
grounded theory for reasoning on cognitive load in software engineering, using abductive reasoning
on literature and data, and our ambition is to provide knowledge for software engineering research
community and practitioners. We use grounded theory as a method, not an epistemological position. We
acknowledge that all qualitative knowledge is inherently constructed, but we are studying the sometimes
fairly gritty surface between limits of the human mind and software development tooling through means
of qualitative inquiry.

With that said, the phenomena we study do arguably exist, albeit in an artificial context largely unbound
by natural laws. If the phenomena did not exist, there would be little point in studying them, nor
their consequences on the human mind. So, just as with Bryant (2017) we want to close the door on
relativisation.

8. Discussion and future work
The findings in relation to the first research goal, to identify the most common cognitive load driver from
the novice point of view, was somewhat surprising. While we build our work on previous identification
of the temporal perspective (Helgesson et al., 2019), the who, did what, when & why, we were quite
surprised to see how large the impact of version control and merge operations were on the students. We
also find it interesting to see the importance of tool support and functionality, tool integration and tool
complexity in agile software development. To us the most interesting observation is the importance of
visual merge support. We also noted that absence of communication and documentation was a contribut-
ing and confounding factor. We also note the absence of research on version control as an indicator for
further research.

In addition to the codes described in our theory, we also noted other indications of cognitive load drivers
in the material. The environment, in terms of ventilation and loud ambience was lamented on, the work
situation was described as draining. Further we also noted disruptions and task switching as a cause of
concern – described as a disruption of flow.

We noted that distributed cognition, from our perspective, is indeed a sound perspective for observing
and analysing software development in agile teams, and it is further interesting to note the reflections
of history enriched objects and the corresponding temporal cognitive dimension made by Hollan et al.
(2000) alongside our findings on version control and merge operations. Future theory building and
theorization based will include constructs describing distributed software development as a ’distributed
cognitive production flow’ and further explore the observed synthetical nature of merge operations.

In regards to our second research goal, to chart what differences or similarities that can be observed
between the different group compositions, we noted that there were indeed observable, yet subtle differ-
ences between the different groups. With that said, during the field work we realised that the differences
we could observe, to us, were significantly less interesting than the similarities we could observe. As a
consequence we choose to use these similarities to strengthen the internal validity of our findings.

Following the 2020 iteration of the course during which these observations were made, the teachers
working in the course had a few discussions on suitable interventions that could be extracted from the
course. We added a more thorough introduction to Git and some harder actual hands on exercises as
preparations for the 2021 course iteration. We further introduced more tool support to the students.

PPIG 2022 211

While the Covid-19 situation has forced us to teach the course via Zoom and arguably made the whole
course (that depends on teamwork) considerably more difficult we systematically noted that the students
were suffering less from version control issues and were actually appearing to be more productive than
previous years. For obvious reasons the pandemic situation prevented us from doing a more thorough
follow up in the field.

Acknowledgement
The authors wish to thank all the participating students for their invaluable contributions, as well as
course responsibles for providing the opportunity to conduct the study. We further thank Softhouse5 for
providing time for the second author and the PPIG reviewers, and audience, for valuable feedback.. The
work described in this paper was conducted in the ELLIIT6 strategic research environment.

9. References
Abend, G. (2008, June). The Meaning of ‘Theory’. Sociological Theory, 26(2), 173–199. Retrieved

2021-05-19, from https://doi.org/10.1111/j.1467-9558.2008.00324.x (Pub-
lisher: SAGE Publications Inc) doi: 10.1111/j.1467-9558.2008.00324.x

Beck, K. (1999). Extreme programming explained: embrace change. USA: Addison-Wesley Longman
Publishing Co., Inc.

Begum, M. (2021). Cognition and Distributed Cognition in Software Engineering Research[WIP]. In
(p. 8). Psychology in Programming Interest Group.

Bertelsen, O. (1997, November). Toward A Unified Field Of SE Research And Practice. IEEE Software,
14(6), 87–88. doi: 10.1109/MS.1997.636682

Blackwell, A. F., Petre, M., & Church, L. (2019, November). Fifty years of the psy-
chology of programming. International Journal of Human-Computer Studies, 131, 52–63.
Retrieved 2019-12-02, from http://www.sciencedirect.com/science/article/
pii/S1071581919300795 doi: 10.1016/j.ijhcs.2019.06.009

Bryant, A. (2017). Grounded Theory and Grounded Theorizing – Pragmatisism in Research Practice.
Oxford, UK: Oxford University Press.

Buchan, J., Zowghi, D., & Bano, M. (2020). Applying Distributed Cognition Theory to Agile Require-
ments Engineering. In N. Madhavji, L. Pasquale, A. Ferrari, & S. Gnesi (Eds.), Requirements
Engineering: Foundation for Software Quality (pp. 186–202). Cham: Springer International Pub-
lishing. doi: 10.1007/978-3-030-44429-7_14

Charmaz, K. (2014). Constructing Grounded Theory (2nd ed.). London, UK: SAGE Publications.
Charmaz, K., & Mitchell, R. (2001). Grounded Theory in Ethnography. In Handbook of Ethnography.

London, UK: SAGE Publications.
Chi, M. T. H., Glaser, R., & Farr, M. J. (2014). The Nature of Expertise. Psychology Press. doi:

10.4324/9781315799681
Chi, M. T. H., Glaser, R., & Rees, E. (1981, May). Expertise in Problem Solving. (Tech. Rep. No.

TR-5). Pittsburg Univ PA Learning Research and Development Center.
Church, L., Soderberg, E., & Elango, E. (2014, June). A case of computational thinking: The subtle

effect of hidden dependencies on the user experience of version control. In B. du Boulay & J. Good
(Eds.), Proceedings of psychology of programming interest group annual conference (p. 123-128).
Brighton, United Kingdom.

De Rosso, S. P., & Jackson, D. (2016). Purposes, Concepts, Misfits, and a Redesign of Git. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (pp. 292–310). New York, NY, USA: ACM. doi:
10.1145/2983990.2984018

Flor, N. V., & Hutchins, E. L. (1991). Analyzing distributed cognition in software teams: a case study
of team programming during perfective maintenance. In J. Koenemann-Belliveau, T. G. Moher,

5https://www.softhouse.se
6https://liu.se/elliit

PPIG 2022 212

& S. P. Robertson (Eds.), Proceedings of Empirical Studies of Programmers (p. 36-64). Norwood,
NJ, USA: Ablex Publishing Corporation.

Glaser, B. G. (1978). Theoretical Sensitivity. CA, USA: Sociology Press.
Glaser, B. G. (1992). Emergence vs Forcing - Basics of Grounded Theory Analysis. CA, USA: Sociology

Press.
Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory. New Jersey, USA: Aldine-

Transaction.
Hansen, S., & Lyytinen, K. (2009, August). Distributed Cognition in the Management of Design

Requirementsdistributed cognition in the management of design requirements. In R. C. Nickerson
& R. Sharda (Eds.), Proceedings of the 15th americas conference on information systems (p. 266).
San Francisco, California, USA.

Hedin, G., Bendix, L., & Magnusson, B. (2005, January). Teaching extreme programming to large
groups of students. Journal of Systems and Software, 74(2), 133–146. doi: 10.1016/j.jss.2003.09
.026

Helgesson, D., Engström, E., Runeson, P., & Bjarnason, E. (2019). Cognitive Load Drivers in Large
Scale Software Development. In Proceedings of the 12th International Workshop on Cooperative
and Human Aspects of Software Engineering (pp. 91–94). Piscataway, NJ, USA: IEEE Press. doi:
10.1109/CHASE.2019.00030

Helgesson, D., & Runeson, P. (2021). Towards grounded theory perspectives of cognitive load in
software engineering. In Ppig 2021.

Henrich, J., Heine, S. J., & Norenzayan, A. (2010, June). The weirdest people in the world? Behavioral
and Brain Sciences, 33(2-3), 61–83. doi: 10.1017/S0140525X0999152X

Hollan, J., Hutchins, E., & Kirsh, D. (2000, June). Distributed Cognition: Toward a New Foundation
for Human-computer Interaction Research. ACM Trans. Comput.-Hum. Interact., 7(2), 174–196.
doi: 10.1145/353485.353487

Höst, M., Regnell, B., & Wohlin, C. (2000, November). Using Students as Subjects—A Compara-
tive Study of Students and Professionals in Lead-Time Impact Assessment. Empirical Software
Engineering, 5(3), 201–214. doi: 10.1023/A:1026586415054

Höst, M., Wohlin, C., & Thelin, T. (2005, May). Experimental context classification: incentives and
experience of subjects. In Proceedings of the 27th international conference on Software en-
gineering (pp. 470–478). St. Louis, MO, USA: Association for Computing Machinery. doi:
10.1145/1062455.1062539

Hutchins, E. (1995). Cognition in the Wild. MIT Press.
Lenberg, P., Feldt, R., & Wallgren, L. G. (2015, September). Behavioral software engineering: A

definition and systematic literature review. Journal of Systems and Software, 107, 15–37. doi:
10.1016/j.jss.2015.04.084

Liebel, G., & Chakraborty, S. (2021, March). Ethical issues in empirical studies using student subjects:
Re-visiting practices and perceptions. Empirical Software Engineering, 26(3), 40. Retrieved
2021-05-10, from https://doi.org/10.1007/s10664-021-09958-4 doi: 10.1007/
s10664-021-09958-4

Mangalaraj, G., Nerur, S., Mahapatra, R., & Price, K. H. (2014, March). Distributed Cognition in
Software Design: An Experimental Investigation of the Role of Design Patterns and Collaboration.
MIS Quarterly, 38(1), 249–A5.

Miller, G. A. (1956). The magical number seven plus or minus two: some limits on our capacity for
processing information. Psychological review, 63(2), 81–97. doi: 10.1037/h0043158

Moody, D. (2009, November). The “Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering. IEEE Transactions on Software Engineering, 35(6),
756–779. doi: 10.1109/TSE.2009.67

Perez De Rosso, S., & Jackson, D. (2013). What’s Wrong with Git?: A Conceptual Design Analysis.
In Proceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (pp. 37–52). New York, NY, USA: ACM. doi: 10.1145/

PPIG 2022 213

2509578.2509584
Ramasubbu, N., Kemerer, C. F., & Hong, J. (2012, September). Structural Complexity and Programmer

Team Strategy: An Experimental Test. IEEE Transactions on Software Engineering, 38(5), 1054–
1068. doi: 10.1109/TSE.2011.88

Rigby, P. C., & Thompson, S. (2005, October). Study of novice programmers using Eclipse and Gild.
In Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange (pp. 105–109).
San Diego, California: Association for Computing Machinery. doi: 10.1145/1117696.1117718

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case Study Research in Software Engineering:
Guidelines and Examples. John Wiley & Sons.

Sedano, T., Ralph, P., & Péraire, C. (2017, May). Software Development Waste. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE) (pp. 130–140). doi: 10.1109/
ICSE.2017.20

Shaft, T. M., & Vessey, I. (2006). The Role of Cognitive Fit in the Relationship between Software
Comprehension and Modification. MIS Quarterly, 30(1), 29–55. doi: 10.2307/25148716

Sharp, H., Dittrich, Y., & de Souza, C. R. B. (2016, August). The Role of Ethnographic Studies in
Empirical Software Engineering. IEEE Transactions on Software Engineering, 42(8), 786–804.
doi: 10.1109/TSE.2016.2519887

Sharp, H., Giuffrida, R., & Melnik, G. (2012, May). Information Flow within a Dispersed Agile Team:
A Distributed Cognition Perspective. In Agile Processes in Software Engineering and Extreme
Programming (pp. 62–76). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-30350-0_5

Sharp, H., & Robinson, H. (2004, December). An Ethnographic Study of XP Practice. Empirical
Software Engineering, 9(4), 353–375. doi: 10.1023/B:EMSE.0000039884.79385.54

Sharp, H., & Robinson, H. (2006, June). A Distributed Cognition Account of Mature XP Teams. In
Extreme Programming and Agile Processes in Software Engineering (pp. 1–10). Springer, Berlin,
Heidelberg. doi: 10.1007/11774129_1

Sharp, H., & Robinson, H. (2008, July). Collaboration and co-ordination in mature eXtreme pro-
gramming teams. International Journal of Human-Computer Studies, 66(7), 506–518. doi:
10.1016/j.ijhcs.2007.10.004

Sharp, H., Robinson, H., & Petre, M. (2009, January). The role of physical artefacts in agile software
development: Two complementary perspectives. Interacting with Computers, 21(1-2), 108–116.
doi: 10.1016/j.intcom.2008.10.006

Sharp, H., Robinson, H., Segal, J., & Furniss, D. (2006, July). The role of story cards and the wall in
XP teams: a distributed cognition perspective. In AGILE 2006 (AGILE’06) (pp. 11 pp.–75). doi:
10.1109/AGILE.2006.56

Stol, K.-J., & Fitzgerald, B. (2018, September). The ABC of Software Engineering Research. ACM
Trans. Softw. Eng. Methodol., 27(3), 11:1–11:51. doi: 10.1145/3241743

Stol, K.-J., Ralph, P., & Fitzgerald, B. (2016, May). Grounded Theory in Software Engineering Re-
search: A Critical Review and Guidelines. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE) (pp. 120–131). doi: 10.1145/2884781.2884833

Storey, M.-A., Damian, D., Michaud, J., Myers, D., Mindel, M., German, D., . . . Hargreaves, E. (2003,
October). Improving the usability of Eclipse for novice programmers. In Proceedings of the
2003 OOPSLA workshop on eclipse technology eXchange (pp. 35–39). Anaheim, California:
Association for Computing Machinery. doi: 10.1145/965660.965668

Svahnberg, M., Aurum, A., & Wohlin, C. (2008). Using Students As Subjects - an Empirical
Evaluation. In Proceedings of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (pp. 288–290). New York, NY, USA: ACM. doi:
10.1145/1414004.1414055

Thornberg, R., & Charmaz, K. (2014). Grounded theory and theoretical coding. In The SAGE Handbook
of qualitative data analysis. London, UK: SAGE Publications.

Vessey, I. (1991). Cognitive Fit: A Theory-Based Analysis of the Graphs Versus Tables Literature*.
Decision Sciences, 22(2), 219–240. doi: 10.1111/j.1540-5915.1991.tb00344.x

PPIG 2022 214

Vessey, I., & Galletta, D. (1991, March). Cognitive Fit: An Empirical Study of Information Acquisition.
Information Systems Research, 2(1), 63–84. doi: 10.1287/isre.2.1.63

Walenstein, A. (2002). Cognitive Support in Software Engineering Tools: A Distributed Cognition
Framework (Unpublished doctoral dissertation). School of Computing Science, Simon Fraser
University.

Zaina, L. A. M., Sharp, H., & Barroca, L. (2021, March). UX information in the daily work of an agile
team: A distributed cognition analysis. International Journal of Human-Computer Studies, 147,
102574. Retrieved 2021-03-04, from https://www.sciencedirect.com/science/
article/pii/S1071581920301762 doi: 10.1016/j.ijhcs.2020.102574

PPIG 2022 215

	2022-PPIG-33rd-helgesson

