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Abstract

Teaching and learning recursive programming has been the subject of numerous research projects and
studies. However, few research publications focus on learners’ steps while solving recursive tasks and
the corresponding identification of mental models. It is the goal of this secondary analysis to identify
the challenges novice learners of Java encounter in recursive problem solving and to map them to the
mental models and conceptions from the literature. The investigated dataset was collected via thinking
aloud experiments with eleven first-year-students of computer science in a professional usability labo-
ratory. Students had to recursively compute the factorial of n and the Fibonacci sequence in a learning
environment. By using deductive categories from the literature, the students’ performance was eval-
uated in terms of their programming steps, their challenges/errors, and thus their ability to generate a
recursive function. The results show that mental models can partially be identified via the analysis of
students’ problem solving steps and errors. Moreover, recursive tasks with more than one recursive call
are more challenging for novice learners. The passive flow of control along with the end of the recur-
sion chain also seem to be counterintuitive for learners. The lack of viable, complete mental models
implies the need for further educational research on instructional methods addressing these challenges
of first-year students. Learning to program may be easy, but novices require fine-grained, step-by-step
scaffolding and instruction, as well as time to understand and apply the more abstract concepts, which
include recursion.

1. Introduction

Novice learners of programming experience a variety of challenges in the first year of their studies.
Among them are the new circumstances due to the start of a new stage in life, organizational structures,
high and unrealistic expectations during the study entry phase (Heublein et al., 2017; Grof3e-Bolting,
Schneider, & Miihling, 2019; M. McCracken et al., 2001; Luxton-Reilly, 2016). In the context of com-
puting, students are further confronted with high performance requirements and possibly deficits. A
great body of research is dedicated to the investigation of common obstacles for students in basic pro-
gramming education (Spohrer & Soloway, 1986; Winslow, 1996; M. McCracken et al., 2001; Robins,
Rountree, & Rountree, 2003; Luxton-Reilly et al., 2018). Among them is the lack of prior knowl-
edge and expertise (Heublein, Richter, & Schmelzer, 2020), the cognitive gap between understanding
and applying a concept (Ala-Mutka, 2004), a high level of abstraction (Kay & Wong, 2018), and the
complexity of structuring and constructing algorithms, programs, and mental models (Kahney, 1983;
Spohrer & Soloway, 1986; Winslow, 1996; Xinogalos, 2014). Programming primarily comprises cog-
nitively complex tasks (Kiesler, 2020b, 2020a). Recursion is considered as one of them, which is due to
its abstract nature, and the lack of everyday analogies; but also its introduction after loops, and the minor
pedagogical emphasis towards it (Kurland & Pea, 1985; Leron, 1988; Levy & Lapidot, 2000; Pirolli &
Anderson, 1985; Troy & Early, 1992; Wiedenbeck, 1988).

Despite this seemingly consensus on the difficulty of programming and the time and effort it takes to be-
come an expert (Winslow, 1996), Luxton-Reilly summarizes that “learning to program is easy” (Luxton-
Reilly, 2016); even children can do it. His arguments are compelling in the face of overwhelming, and
repeated evidence of students’ challenges in introductory programming (Tew, McCracken, & Guzdial,
2005; Whalley & Lister, 2009; Luxton-Reilly et al., 2018). Despite the great body of research, learners’
challenges seem to continue. In the case of recursion, for example, learners still seem to experience more
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difficulties related to the passive flow of execution control, especially if two recursive calls are involved.
Moreover, students can hardly predict when a recursive program terminates (Scholtz & Sanders, 2010).

In cognitive psychology, the concept of mental models refers to the individual, cognitive representations
of a students’ knowledge (Johnson-Laird, 1989; Norman, 2014; Schwamb, 1990), whereas the models
can be characterized by their viability. In the context of computing, several models have been developed
to categorize students’ representation of knowledge on recursion (Kahney, 1983; Close & Dicheva,
1997; Bhuiyan, Greer, & McCalla, 1994). Helping students to develop adequate mental models of
recursion is a crucial step towards improving their understanding and application of this cognitively
complex concept. Educators therefore need a better understanding of students thinking, their problems
and above all, their mental models, in order to help support them via conscious pedagogical decisions
and instructions. However, educators need indicators to detect non viable mental models early.

In order to eventually help foster students’ construction of mental models of recursion, this paper an-
alyzes first-year Computer Science (CS) students’ steps and challenges while recursively solving two
programming tasks in Java. In addition, the aim is to investigate the extent of which students’ problem
solving steps can be aligned with the known mental models (Gotschi, Sanders, & Galpin, 2003; Scholtz
& Sanders, 2010) and reflect the associated viability. The research questions of the present work are:
(1) How do first-year CS students write recursive functions in Java? (2) Which challenges do first-year
CS students encounter while recursively solving programming tasks in Java? and (3) To what extent are
mental models from the literature reflected in students’ problem-solving steps and errors?

The contribution of this research is a secondary, qualitative analysis of novice programmers steps and
the identification of their challenges related to recursive problem solving in Java. It will contribute to
the greater generalization of students’ representations of knowledge due to the analysis of their problem
solving processes in an actual programming language. The results further provide implications on the
recognition of non viable models, as well as the development of instructional methods and interventions
to foster students’ construction of viable mental models of recursion.

The structure of the paper is as follows. Section 2 summarizes related research on mental models, and
mental models of recursion. In section 3, the methodology of this secondary analysis will be outlined
by introducing the utilized dataset, and the method for data analysis. Next, the results with regard to
students’ steps (RQ1), and challenges (RQ2) in the recursive problem solving process are presented.
These are then mapped with the mental models of recursion and discussed to answer RQ3. An overview
of the limitations follows in section 5. Conclusions and future work wrap up this secondary research.

2. Related Research on Learners’ Mental Models of Recursion

Mental models are a concept that is rooted in cognitive psychology (Johnson-Laird, 1989; Norman,
2014). They aim at the description of individual, cognitive representations of knowledge (Schwamb,
1990; Wu, Dale, & Bethel, 1998) through a constructivist lens. However, there is not a single con-
structivist theory. It is rather the sum of ideas on learning via the personal construction of meaning and
corresponding instruction (Stone & Goodyear, 1995): “There are many ways to structure the world and
there are many meanings or perspectives for any event or concept. Thus, there is not a correct mean-
ing that we are striving for (Duffy & Jonassen, 1991).” There is thus not an ultimate reality everyone
agrees upon (Duffy & Jonassen, 1991). Accordingly, learning is defined as the active, subjective pro-
cess that highly depends on individual interpretation, experiences, and perspective (Stone & Goodyear,
1995). Therefore, knowledge is described as viable, and not as “true” or “correct”. For this reason,
this work does refer to the challenges novice learners experience in recursive problem solving, and not
to the so-called “misconceptions” mentioned in other related work (Close & Dicheva, 1997; Dicheva
& Close, 1993). The more radical constructivist theories even neglect the idea of any objective real-
ity (Von Glasersfeld, 1996).

Mental models have also been investigated in the context of computing, and to describe student’s in-
dividually constructed knowledge of recursion (Bhuiyan et al., 1994; Kahney, 1983; Close & Dicheva,
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1997; Dicheva & Close, 1993, 1996; Scholtz & Sanders, 2010). It was found that novice learners’ mod-
els deviate from the expert model of recursion, making them unable to predict how recursive programs
behave (Kahney, 1983; Wu et al., 1998). While novices tend to have constructed the incorrect loop
model, experts share the copies model (at least in SOLO, LISP and Logo) (Close & Dicheva, 1997).
With more experience and practice, however, novices can change their construction and representation
of knowledge, which is at the heart of constructivist learning (Duffy & Jonassen, 1991; Von Glasersfeld,
1996). Norman (2014) concludes that mental models may not be stable, i.e., they can be forgotten or
confused with other systems to reduce mental complexity.

Kahney (1983) defines recursion as “a process that is capable of triggering new instantiations of it-
self, with control passing forward to successive instantiations and back from terminated ones (Kahney,
1983).” Similarly, George (2000a) defines recursion via the “(active) ‘flow of control’ to a new
invocation/copy of the subprogram called”, and the passive flow of control “back from terminated
ones” (George, 2000a). According to Kahney (1983), and Kessler & Anderson (1986), novices do
experience challenges in understanding tail recursion with functions and embedded recursion, which is
related to their lack of understanding the control mechanisms, especially the passive flow of control.
This in turn implies them having unfavorable mental models of recursion. Scholtz & Sanders (2010)
conclude that students often develop inadequate mental models when two recursive calls are part of a
procedure or function. They also observed that students can hardly predict when a recursive algorithm
terminates, as they tend to associate recursion with the (previously constructed) loop model. The passive
flow of control back from the terminated instantiations is thus a common problem among novice learners
of programming. Veldzquez-Iturbide (2000) adds that recursion seems to be more difficult in imperative
programming languages, as educators tend to confuse recursion and imperative recursion, where other
mechanisms (e.g., parameter passing, control stack, etc.) have to be mastered simultaneously.

The following mental models of recursion are summarized in related research investigating and classi-
fying students’ constructs (Kahney, 1983; Gotschi et al., 2003; Sanders, Galpin, & Gotschi, 2006):

* The Copies Model is the viable model that reveals the active flow of control, and the switch to the
passive flow once the base case is reached. The passive flow of control is made explicit.

* The Loop Model views recursion as a kind of iteration that halts once the base case is reached. It
ignores both the active and passive flow of control. The base case is considered as stopping condition
of the loop.

* The Active Model only reflects the active flow of control, but the indication of a passive flow is absent.
Students evaluate the solution at the base case. The model can be viable in some cases.

* The Step Model is nonviable, as the students lacks understanding of recursion. Either the recursive
condition, or the recursive condition and the base case is executed once.

* The Return Value Model describes the view that values are generated by each instantiation, which are
then stored and combined to calculate a solution.

* The “Syntactic”, “Magic” Model reveals that students have no idea of recursion and how it works.
Nonetheless, they can match syntactic elements. The active flow, base case, and passive flow can be
traced. Due to their errors, a lack of understanding is assumed, which requires further teaching/learn-
ing activities.

* The Algebraic Model describes students who treat the program as algebraic problem.

* The Odd Model encompasses different misunderstandings, which lead to the student not being able to
predict the program’s behavior.

In addition to developing viable mental models, learners need time and practice to construct mental
models to understand and apply program structures, whereas even varying mental models can lead to
identical and correct problem solutions (Kahney, 1983). To conclude, it is difficult for learners to develop
adequate schemata. Likewise, educators face challenges in assessing individual mental models and
constructs required for the successful planning of algorithms and programs. Due to these reasons, it is
important to investigate mental models of novice learners of programming further by examining their
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ability to recursively solve problems in a commonly used programming language, such as Java. The
results and implications on students’ mental models will help address learners’ challenges by developing
new forms of instructions and pedagogical concepts.

3. Methodology

For this secondary analysis of research data, a publicly available, qualitative dataset with students’ prob-
lem solving steps was utilized to identify their challenges, and to what extend their mental models of
recursion are reflected. This sections briefly introduces the context of the primary dataset, its structure,
and tasks. Moreover, the analysis of the data is presented. The goal is to investigate students’ steps and
errors, and to test the mental models further, as implied by prior research (Close & Dicheva, 1997).

3.1. Data Collection

In educational technology research, identifying research data for secondary research is challenging due
to several reasons (e.g., lack of recognition for researchers, lack of quality, data provenance etc. (Kiesler
& Schiftner, 2022)). In the context of programming education, few datasets are available that allow for
the analysis of novice learners’ steps while recursively solving programming exercises in Java. One
of them is provided by a German research data center (Kiesler, 2022a, 2022b). It was part of a recent
doctoral dissertation in the context of introductory programming education (Kiesler, 2022d).

The data had originally been gathered to investigate the effects of informative feedback offered by (on-
line) self-learning tools (Kiesler, 2022a), such as CodingBat (Parlante, 2022a) (see Figure 1). Two
recursive tasks in Java were selected for the conduction of two thinking aloud experiments (test series
A and B) (Heine, 2005; Knorr, 2013; Konrad, 2017) where students had to recursively solve problems
in Java. In sum, eleven students of the Department of Applied Computer Science participated as test
subjects in series A and B. All of them had successfully participated and completed the course “Pro-
gramming 17 (i.e., the basic programming course) at Fulda University of Applied Sciences in Germany,
which also addresses the concept of recursion as part of both the lecture and exercise session.

COd | ng Bat code practice Expected Run
factorial(1) — 1 1 OK
Recursion-1 > factorial factorial(2) — 2 2 OK
factorial(3) — 6 6 OK
Given n of 1 or more, return the factorial of n, which is n * (n-1) * (n-2) ... 1. Compute factorial(4) — 24 24 OK
the result recursively (without loops). factorial(5) — 120 120 oK
factorial(1) 1 factorial(6) — 720 720 oK
factorial(2) — 2 factorial(7) — 5040 5040 OK
factorial(3) — 6
‘ factorial(8) — 40320 40320 OK
Go \...Save, Compile, Run (ctrl-enter) Show Hint| Show Solution| | factorial(12) — 479001600 [ 479001600 | OK
J
other tests OK
public int factorial(int n) {
if (n == 1) return 1; ¢
return n * factorial(n-1); All Correct
} Good job -- problem solved. You can see our solution as an alternative.

See Our Solution

Figure 1 — Condensed screenshot of a CodingBat exercise on recursion.

Students had to solve two tasks, which served as test instruments. Both test series A and B included
the computation of the factorial of n, resulting in a sample size of 11 students for the first task (students
AO01 to A06, and BO1 to B0S5). In addition, the Fibonacci sequence was computed by the five students of
test series B (students BO1 to B05). A total of 16 transcripts from 11 students are thus available. In the
primary research, another tool/task (Kiesler, 2016a, 2016b) was tested in series A, resulting in a lower
N in the Fibonacci task. Computing the factorial of n as a task in both series A and B requires students
to write a base case and one recursive call. Computing the Fibonacci sequence as second task in series
B demands two base cases, and two recursive calls. Both tasks require students to apply fail recursion,
which refers to the position of the recursive call as last action of the algorithms.

1. N=11: Given n of 1 or more, return the factorial of n, which is n * (n-1) * (n-2) ... 1. Compute
the result recursively (without loops) (Parlante, 2022b).
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2. N=5: The fibonacci sequence is a famous bit of mathematics, and it happens to have a recursive
definition. The first two values in the sequence are 0 and 1 (essentially 2 base cases). Each
subsequent value is the sum of the previous two values, so the whole sequence is: 0, 1, 1, 2, 3, 5,
8, 13, 21 and so on. Define a recursive fibonacci(n) method that returns the nth fibonacci number,
with n=0 representing the start of the sequence (Parlante, 2022c).

The dataset comprises the manually transcribed students steps in the problem solving process in form
of a table, so that students’ input to the available CodingBat working space can be traced. Every change
in the working space (where the programming code is written) has been transcribed, as depicted in
Table 1. Students’ steps were further qualitatively analyzed into categories implying the type of change
(e.g., keyword added (if), recursive function call added, parameter of recursive function call added, etc.).
The dataset also reveals timestamps, and the system feedback provided by CodingBat (Parlante, 2022a),
so that every change/step made by students can be reconstructed and students’ reactions to the system
feedback can be tracked. A detailed description of the dataset and the applied methodology is available
online (Kiesler, 2022b).

Table 1 — Excerpt Representing the Structure of the Dataset on Students’ Steps.

time |programming code i?):;:;lltatlve) ?lfltllt(:)ln) system feedback
public int factorial (int n) { problem
25:05 .
) solving starts
Compile problems:
2514 public int factorial(int n) { no change Go button missing return statement line:3
) see Example Code to help
with compile problems
First, detect the "base case", a
case so simple that the answer
can be returned immediately (here
public int factorial (int n) { . when n==1). Otherwise make
25:17 no change Hint i 11 of factorial(n-1
g button a recursive ca (n-1)
} (towards the base case). Assume
the recursive call returns a correct
value, and fix that value up to
make our result.
public int factorial (int n) {
25:49 if () keyword
) added (if)
public int factorial (int n) {|one condition
26:06 if (n == 1) added (base
} case)
public int factorial (int n) {
26:09 if (n == 1) return keyword
) added (return)

3.2. Data Analysis

Due to this research’s secondary nature, the primary dataset and its structure (see Table 1) predetermine
the secondary analysis as a whole. In the case of the present dataset, students’ sequence of problem
solving steps/changes in the programming code can be analyzed to answer the research question (/)
How do first-year CS students write recursive functions in Java? In order to answer RQI1, the lines
of code students write are analyzed with regard to their steps, for example, whether they relate to the
base case, the recursive function call, or the parameter of the recursive function call. In this context,
the changes of the programming code will also be relevant. The number of changes are defined via
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the steps needed to come to the correct solution after having made a mistake that was executed via
the Go-Button provided by CodingBat (e.g., deleting, adding, changing return values, parameters, etc.).
Changes in indentations are ignored. A step aligns with the primary research’s analysis, where every
step (displayed per row in Table 1) was assigned a qualitative code. The qualitative codes of all 16
records will be analyzed and clustered with regard to these crucial elements of the recursive solution to
the tasks. Timestamps, however, will not be considered.

Next, students’ errors will be analyzed to answer the second research question (2) Which challenges do
first-year CS students encounter while recursively solving programming tasks in Java? In this regard, the
main components of recursion will be used as categories: the active flow, the passive flow, and the base
case(s). If applicable, these categories are supplemented by further subcategories, which are inductively
built and used to describe accompanying challenges, or error causes. In addition, commonly known
mistakes from the literature (Close & Dicheva, 1997) are considered for the qualitative coding.

As a last step of this analysis, students’ steps and challenges during recursive problem solving will be
mapped to the known mental models described in Section 2 to answer research question (3) To what
extent are mental models from the literature reflected in students’ problem-solving steps and errors?
As a part of this mapping, the definition of models will be used to identify patterns in the problem
solving process that may be aligned with the construction of the mental models’ categories as defined
by Kahney (1983); Gotschi et al. (2003); Sanders, Galpin, & Gétschi (2006). The corresponding
identification of indicators will help operationalize mental models for educators, and eventually help
foster learners’ understanding of recursion.

4. Results

4.1. How Students Write Recursive Functions in Java (RQ1)

The problem solving process to some extent manifests in how students write a program as a solution
to a task. In the present dataset, all 16 solutions were analyzed with regard to the main components of
the expected recursive functions and their sequence, e.g., the if statement related to the base case(s), the
recursive function call(s) and its/their parameter(s), as well as the correct use of operators. The two tasks
were analyzed separately, and the following analysis distinguishes between the two tasks.

4.1.1. Factorial of n

First of all, it should be noted that all 11 students who worked on this task were able to solve it. Among
the four students who successfully solved the task without a single error (A02, A03, A04, B03), three
different sequences were observed. In all of them, first-year students write the if statement representing
the base case first. The sequence of the remaining components (recursive function call, parameter of
recursive function call, and multiplication with n) deviates. However, writing the recursive function call
in all cases precedes writing the parameter of recursive function call, which seems to be a successful
sequence.

In the remaining seven problem solving processes, similar pattern were recognized. Six of the seven
remaining students also started writing the if statement representing the base case first. Only one student
(B04) who merely forgot a semicolon and was otherwise error-free wrote the if statement last and began
with the recursive function call. Yet again, all students write the recursive function before adding its
parameter. The multiplication with n is a step that seems to deviate in its position. Six of the eleven
students (A01, A03, A04, A06, B02, BO5) immediately write it after finishing the base case. Two of the
eleven write it after the recursive function call (A02, BO4), and the remaining three write it as a last step
(A0S, BO1, B03).

Students’ changes to their code are analyzed next. Due to the four error-free samples, seven samples with
changes remain. Table 2 summarizes the changes students made to their code. It should be noted that the
table does not represent the sequence of their steps. Most of the changes were related to the if statement
and thus the base case. Four student had to adapt their code. Similarly, four students (AO1, A0S, BO1,
B02) edited the parameter of their recursive function call. The recursive function call, however, required
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Table 2 — Number of changes made by students during recursively solving the factorial of n task.

Student Steps: A01 | A0S | A06 | BO1 | B0O2 | B04 | BOS
if statement (base case) - 5 - 4 5 - 1
multiplication with n - - - 4 4 - -
recursive function call - - - 2 - - -
parameter of recursive function call 1 3 - 1 5 - -

only one student (B02) to make changes to their initial code, which means that 10 of the 11 students
correctly wrote that component. The multiplication with n required two students (BO1, B02) to adapt
their code.

4.1.2. Fibonacci Sequence

The Fibonacci task was successfully solved by two students (BO1, BO4), while two other students (B02,
B03) aborted the problem solving process altogether without solving the problem. With the small sam-
ple size for this task (n=5), few data remains. Nonetheless, the sequence of students’ steps is briefly
summarized. The two students with no errors and changes applied the following sequence of steps:

1. if statement (first base case)

if statement (second base case)

first recursive function call

parameter of first recursive function call

add operator

second recursive function call

7. parameter of first second recursive function call

AR

Although student BOS tried to use addition instead of two recursive calls first, the learner in general
applied the same sequence of steps. Students BO2 and BO3 who did not develop a viable solution, made
changes related to the second recursive function call, forgot it or misplaced it along with its parameter
as part of the second base case (see, for example, Listing 1).

public int fibonacci(int n) {
if (n==0) return 0;
if(n > 1) n + fibonacci(n-1);
return n + fibonacci(n-1);

Listing 1 — Example of student BO2’s positioning of the second recursive function call.

Students’ changes of their code are summarized in Table 3. Again, two students (B02, BO5) were
concerned with the correction of their if statements, which represent the base case(s). Moreover, the first
recursive function caused errors and therefore required changes from two students (B02, BO5). Student

Table 3 — Number of changes made by students during recursively solving the Fibonacci task (n.a.
= not available).

Student Steps: B02 | B03 | BOS
if statement (first base case) - - 1
if statement (second base case) 4 - -
first recursive function call 1 - 2
parameter of first recursive function call 1 2 2
add operator - - -
second recursive function call - n.a. -
parameter of second recursive function call - 17 -
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B02, for example, somehow added the first recursive function to the base case (see Listing 1). BO3 was
especially busy with the edition of the parameter of the second recursive function call, as the second
recursive function call itself was not written, and the error could not be corrected after 17 attempts. The
parameter of the (first and second) recursive function call required changes from all three students B02,
BO03 and BO05. It should be noted that CodingBat did not provide a hint or model solution for the task.
Only the expected values were presented and compared with students’ results (see right-hand side of
Figure 1).

4.2. Students’ Challenges During Recursive Problem Solving (RQ2)

In this section, the first-year CS students’ challenges during recursive problem solving are summarized.
For each tasks, a categorisation of student errors is presented and related to the main components of the
expected recursive solution.

4.2.1. Factorial of

Although the recursive computation of the factorial of n may seem simple, and all 11 students were
capable of solving the problem, errors were made during the process. The left column of Table 4
summarizes the observations into categories of detected student errors. The number in brackets behind
the bullet points indicates the frequency of the errors, and thus how many of the students made these
errors.

The list reveals that not all errors were related to recursion. The first bullet point reveals a number
of syntax and semantics problems resulting in compile errors or the CodingBat feedback “Bad Code”.
The second bullet point reveals that a student did not adhere to the starter code provided by CodingBat,
which is always correct. The student thus tried to alter the function’s signature and solve the problem by
introducing an additional parameter and variable. The last three bullet points concern students’ errors
related to recursion, e.g., the condition or return values of the base case, the recursive function call, and
its parameter. They thus comprise all three key components of the recursive solution to the problem. It
should further be noted that 4 of the 11 students were able to solve the task without any error.

4.2.2. Fibonacci Sequence

The second task required students to write two base cases and use two recursive function calls with
correct parameters. Two of the five students with available data were able to successfully solve the
task without any error. Two students did not develop a viable solution and aborted the problem solving
process. The right column of Table 4 summarizes the categories of detected errors.

The enumeration contains only logic errors, although the first bullet point is not directly related to re-
cursion. Instead, the student tried to solve the problem with an additional help function. The three other
error categories, however, are closely related to the main components of recursion. Similarly to the first
task, learners experienced challenges when writing the base case, the first and second recursive function
call, and the corresponding parameters. In addition, the selection of an operator for the calculation of
the return value of the else-block seemed to be challenging. The lack of the second recursive function
call (with parameter) and students’ substitution of it via some other operation should be noted as main
cause of errors.

4.3. What Students’ Steps and Errors Reveal about their Mental Models of Recursion (RQ3)
The last research question aims at the identification of indicators of students’ mental models of recur-
sion. Unlike related work, this research did not analyze students tracing of the execution of recursive
programs (Kahney, 1983; Gotschi et al., 2003; Sanders et al., 2006). Thus, the implications of students’
steps and errors on their models will be discussed based on the qualitative dataset. Nonetheless, the
categories Gotschi et al. (2003) used for the analysis of students’ traces related to the active flow, the
base case, and the passive flow were considered as starting point. However, due to their (G6tschi et al.,
2003) lack of a detailed definition and anchoring examples for the categories, the coding scheme could
not entirely be replicated.

PPIG 2022 233



Table 4 — Overview of Students’ Challenges While Recursively Solving Two Examplary Problems.

Factorial of n (n!) Fibonacci Sequence
* Syntax and semantics errors * Logic Error: Declaration of additional
— using incorrect operators as condition of the case function
case or parameter (2) — addition of function signature with ad-
— lack of return statement in else block (2) ditional parameter
— lack of return value of else block * Logic Error: Errors related to base cases
- adding redundant return statement — incorrect return value of second base
— mixing up System.out.println and return case
statements — lack of second base case
— lack of semicolon — incorrect condition of base case
* Falsification of starter code * Logic Error: Errors related to recursive
— changing the functions’ given correct signature by function calls
adding a parameter — addition with n (or other operation,
— follow-up error: introducing additional, unneces- eg.n—1,2xn,n—(2x(n—1)),n—3,
sary variable n—2,n—(n/2),n—(n—2), etc.) in-
* Logic Error: Errors related to the base case stead of second recursive function call
— incorrect return value (zero) of base case (2) (with parameter) as return values of the
— incorrect condition of base case else-block (3)
* Logic Error: Errors related to recursive function call — lack of second recursive function call
— lack of recursive function call (with parameter) (with parameter) in else-block (2)
— adding a second, unnecessary recursive function — placement of second recursive function
call (plus parameter) call (with parameter) as return value of
* Logic Error: Errors related to parameter of recursive the second base case
function call * Logic Error: Errors related to parameters
— multiplication of n is within the parameter of the of recursive function calls
recursive function call (2) — incorrect parameter(s) of first recursive
— other incorrect parameter of recursive function function call
call

4.3.1. Active Flow

Some of the categories by (Gotschi et al., 2003) could be applied to students’ steps, changes and errors
without requiring more data or details. Among them were code alterations related to the active flow of
control, thus calling factorial(), until its argument becomes 1. In this context, the algebraic manipulation
of the function call (+n,+n-1, etc.) instead of a second recursive call was observed (B03, B05). Thus
the need for a second recursive function call was not clear to all first-year students. The “algebraic”
category (Gotschi et al., 2003) is an indicator of students having adopted the step model or return value
model. Determining the parameter of the recursive function call was challenging for many students. In 7
of the 16 records and in both tasks, students changed the parameters after initial, unsuccessful attempts
to execute their code. Nonetheless, all students wrote at least one recursive call with a parameter, and
thus made ““a new invocation with a new argument” (Gétschi et al., 2003). Moreover, several students
achieved a correct solution without requiring feedback from the system. It can be assumed that they
share at least this component of the copies model of recursion.

4.3.2. Base Case

Two categories (Gotschi et al., 2003) assigned to the base case were observed. The first one is the “check
incorrect” category describing an incorrect test for a base case. This error occurred in both tasks (e.g.,
BO1, B02; factorial of n, and B02; Fibonacci). The incorrect test definition may indicate the odd model,
as students are not able to predict the program’s behavior. The second category “base omitted” was
detected when subject BO3 tried to compute the Fibonacci sequence. The second base case was omitted.
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Other errors related to the base case (see Table 4) occurred in both tasks, and concerned incorrect return
values. This error is evaluated as yet another indicator for the return value model or the step model. Yet
again, the six cases of immediate correct student solutions (out of 16) may imply that students developed
the viable copies model, where the switch from active flow to passive flow takes place once the base case
is reached. In any case, all students were aware of the necessity of a base case.

4.3.3. Passive Flow

Students’ steps, their changes to the code and errors somewhat hint towards students’ mental models
of recursion. Although judgements about students’ conception of the passive flow of control are chal-
lenging via the analysis of their program code, the “return problem” and “changed operations” implied
non viable models. For example, student BO2 added a recursive function call to the second base case in
the Fibonacci task (see Listing 1), implying misconceptions about parameter passing and return value
evaluation. The error could imply the odd model. The change of operations (addition, subtraction,
multiplication, division), and their order was also observed when students worked on the parameter of
the recursive function call. According to (Gotschi et al., 2003) and (Kahney, 1983) this is an indica-
tor of the magic model, because students seem to be “sensitive to the position of the different program
segment” (Kahney, 1983).

4.3.4. Discussion and Implications for Teaching

The idea to analyze students’ steps, and errors to gain insight into their mental models of recursion
revealed a number of challenges and findings. These will be discussed in the following, along with the
implications for introductory programming education. First of all, the categories and models developed
in related work (Kahney, 1983; Gotschi et al., 2003; Sanders et al., 2006) proved to be incomplete with
regard to their categorization, category definitions and their application to student solutions. In addition,
an evaluation of categories for all three components (active flow, base case, and passive flow) along with
a mapping to the resulting model is not available. A full replication is thus impossible. However, some
indicators for the models presented in prior work were identified. Among them were categories related
to the active flow (algebraic), base case (check incorrect, base omitted) and passive flow (return problem,
operation changed). This leads to the assumption that students’ steps and errors do provide indicators
on their mental models of recursion, especially, if their problem solving steps reveal errors related to
the recursive function call(s), their parameter, the condition and return value of the base case, and the
if statement in general. Therefore, the assessment of students’ steps and errors seems to constitute
a promising approach for educators to help facilitate student learning and the development of viable
mental models. However, whether a student developed a viable mental model could not be confirmed,
despite some students achieving the correct solution in either the factorial, or the Fibonacci task. As
none of the students from the B test series succeeded in both tasks, the conclusion is that students did
not develop fully viable models yet.

A second important finding concerns students’ challenges and errors. For example, the numerous adap-
tions of students’ code indicate that student do not know how to write a viable condition (if statement)
with a return statement, even when receiving several types of tutoring feedback by a tool like Coding-
Bat (Kiesler, 2022¢). Recursion does not seem to be the only obstacle. Students are not convinced of
their selection of parameters, they change them often, and seemingly random. This may indicate that
their knowledge representation of parameter passing is not yet complete/viable. In case of the Fibonacci
sequence, the many changes related to the second recursive function call, its parameter and the calcu-
lation of the return value seems to be most challenging for learners. They also need to recognize that
two base cases with a certain return value are required. While analyzing students’ application of the
concept of recursion, we need to ask whether we as educators can evaluate mental models of recursion
in isolation, without the review of related concepts, learning objectives, and competencies (Raj et al.,
2022).

Third, the findings reveal that many of the first-year student solutions show indicators of non viable
mental models of recursion. According to Luxton-Reilly (Luxton-Reilly, 2016), learners do understand
the concept of recursion, but it may take them longer than educators (the experts) expect. George (2000b)
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suggests that the explicit simulation of a recursive algorithm’s execution via diagrammatic traces may be
the best method when teaching recursion to students. Wilcocks und Sanders (1994) suggest animations
to illustrate the execution of recursive programs, the flows of control and the resulting “copies” (Kahney,
1983; Sanders et al., 2006). Scholtz and Sanders (2010) recommend to use numerous examples of
recursive problems and algorithms. Close further outlines a number of approaches for teaching recursion
to children, aged 10 to 14 (Close & Dicheva, 1997). It has further been argued that recursion should
not be treated as an advanced topic, but rather be taught early in the curriculum (Astrachan, 1994;
D. D. McCracken, 1987): “If recursion is presented as one powerful tool among others, through many
examples and with opportunities to practice using it” (D. D. McCracken, 1987). Similarly, a gradual
approach to recursion is recommended by Velazquez-Iturbide (2000). The present findings support
these perspectives and implications for teaching recursion to novices.

5. Limitations

The limitations of this work are due to the small sample size and its origin from a single institution.
Moreover, the limitations of the primary research apply with regard to the unnatural situation in the
usability laboratory where the experimental setup had been realized. Students may have behaved differ-
ently in a natural setting. The transcription and qualitative analysis of the dataset, however, allows for the
precise reproduction of students’ steps in that setting, and an in-depth perspective into students’ recur-
sive problem solving in Java. More qualitative, pre-processed data on students’ steps would nonetheless
help generalize the understanding of how students solve recursive programming tasks in Java.

6. Conclusions and Future Work

The goal of this research was to identify the steps and challenges of novice learners in the context
of recursive problem solving, and to explore what students’ steps and errors reveal about their mental
models of recursion. The present work utilized a publicly available, qualitative, and pre-coded dataset
with students’ problem solving steps during two Java exercises which had been gathered in a usability
laboratory. The data analysis clustered students’ sequences of steps, their changes to the code, as well
as their errors in alignment with the main components of the expected recursive solutions. Although
prior research (Gotschi et al., 2003; Sanders et al., 2006) could not be replicated, indicators for students’
mental models were identified. Among them are students’ errors related to the base case, the recursive
function calls, and their parameters. The second recursive call in the Fibonacci sequence seemed another
challenge. Moreover, syntax and semantics errors (e.g., operators, return statements, declaration of
functions, parameter passing, etc.) posed challenges to learners. The analysis whether, and to what
extent non viable mental models, such as the step model or return value model and their indicators are
reflected and observable in students’ problem solving steps and errors will help educators identify non
viable models, and foster students’ understanding of recursion in terms of their mental representation of
the concept. Learning environments may also adapt their feedback accordingly.

To conclude, recursion is still a challenging concept for novice learners, which is why the need for
adequate, learner-centered instruction is a continuing one. The paper further results in implications for
introductory programming education, such as more critical teaching practices, revisiting expected norms
for introductory programming and becoming more realistic towards achievable learning outcomes of
introductory courses. In future work, big data or learning analytics approaches may be used to analyze,
or pre-process quantitative datasets on students’ steps, which are available at repositories (Koedinger et
al., 2010). Such research will help educators find more and early evidence of non viable mental models
in novice learners’ programs. Another currently pursued approach is the development of expert feedback
for the two selected exercises and students’ steps (see, e.g. Jeuring et al., 2022).
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