Storyboard 1 When compiler errors occur, they are rendered in the side-pane with
check-boxes. When the box for a particular error message is checked, all code not di-
rectly checked by the compiler is obfuscated. Multiple errors may be checked, with lines

of common interest highlighted.

Storyboard 2 Compiler errors and the associated lines of code checked by the com-

piler are highlighted with ellipses, with "elastic bands" connecting them. When the error
node is clicked and dragged, the associated code sections are pulled out of the code pane
alongside it. The number of times a code fragment is checked by the compiler is used to
assign "weight" to the elements, with more frequently checked elements "sticking" to the

code pane.

PPIG 2022

Storyboard 3 A permutation of story board 1. When the error box is checked, a "post-it
note" element is added to the display, showing only the code that is directly checked by

the compiler. These post-it notes may be moved around the screen at will.

Figure 7 — Storyboards of expanded concepts from the ideation session.

34



import java.util.HashSet;

import java.util.Scanner; . . .
import java.util.HashSet;
public class GeneticSearch { import java.util.Scanner;
public static int occurences(String find , public class GeneticSearch {
int count; public static int occurences(String find , String str) {
int index = str.indexOf(find); int count; While I was considering your code, | found these problems:
while (index != -1) int index = str.indexOf(find); ’ Local variable count is not assigned before used
count++; while (index != -1)

’ Local variable count is not assigned before used

index = str.indexOf(find , index + 1);
l:l count++;
index = str.indexOf(find , index + 1);

}

’ no field named T is accessible

return count; }
! return count; ’ no method named i in matches.
public static int setSum(HashSet<String> ch ¥

int sum = 0; public static int setSum(HashSet<String> checks , String str) {

for (String find : checks) int sum = 0;

sum += occurences(find , str);

for (String find : checks)
return sum; sum += occurences(find , str);

}

return sum;

public static char dna(int x) { }
if (x == 0)
return 'A'; public static char dna(int x) {
if (x == 1) if (x == 0
return 'G'; return 'A';
if (x == 2) if (x == 1)
return 'C’; return 'G';
if (x == 2)
return T; return 'C';
}
return T;

publiec static void main(String[] args) {
Scanner scan = Scanner(System.in);
public static void main(String[] args) {

while (true) Scanner scan = Scanner(System.in);
String S = scan.next(); while (true)
o {
if (S.equals('0')) String § = scan.next();
break;

if (S.equals('0'))

String L = scan.next(); break;

HashSet<String> type2 = new HashSet<>()

" = String L = scan.next();
HashSet<String> type3 = new HashSet<>()

HashSet<string> type2
HashSet<string> type3

new HashSet<>();
new HashSet<>();

Figure 8 — An example of a heat map generated on a one of the Java code snippet that was presented
in the user study. As the mouse pointer is hovering over the first error ("local variable count is not
assigned before use" on line 14) the attention of the compiler when finding that error is shown is
visualized as a line-based heat map.

Storyboard 2 was selected for further development.

4.2. Implementation

Building on the previous Progger work, a new version of the prototype was developed. The initial
version of Progger, as described in Section 2, uses the JastAdd tracing system to track the evaluation of
attributes at the time of an error occurring. From this, an evaluation tree is constructed, with many of
the nodes directly related to token locations in the code. As token locality was the primary focus of the
most recent iteration, this previous design meant that no further information was required to be extracted
from the compiler in order to determine the heatmap.

On reception of the attribute tree from the compiler, Progger v2.0 iterates through the tree and logs
each instance of a "location" attribute occurrence. These location attributes come as a range, e.g:
14,0-15, 12, whichis of the format startLine, startColumn—-endLine, endColumn. From
this list of ranges, a map is calculated where the key is a single location, e.g. 14, 0, and the value is
the number of times this token is visited across all location ranges. From this map, highlighting can be
applied to the code pane, with the darkness of the highlighted code calculated from the number of times
the token has been visited by the compiler. An example of this is found in Figure 8.

5. Discussion

In this paper, we have presented the results of a user study evaluating the approach implemented in
the Progger prototype (McCabe et al., 2021). We used a light-weight café style study, combined with
a thematic analysis of transcripts, to gather design input for an ideation workshop. The results from

PPIG 2022 35



the user study played down the utility of the attribute trace tree (which we had some hope for) while the
utility of the companion highlighting was brought to the surface. As a consequence, our focus was geared
toward that of attention and the role it plays in the kind of "compiler conversations" we are considering
in this work. With input from the sketches generated in the ideation workshop, we explored one design
direction focusing on incorporating visual cues into Progger in the form of a "compiler attention heat
map" laid out on visual tokens in the source code.

Heatmaps & Attention As mentioned in Section 2, Ahrens et al. (Ahrens et al., 2019) have also
explored the use of heat maps but with the goal of visualizing the attention of other developers. They
found some issues in their method due to imprecision between the generated heat maps and the mapping
to the source code, distorting the locality of the attention, causing some of the experienced programmers
in their study to find the visualisation technique distracting. In our explored setup, we consider the
"thought-process" of the compiler where the heat map weights are calculated and assigned based on the
number of code element visits by the compiler during analysis. We speculate that we would not see the
same distortion of attention as when eye-tracking data is mapped to code lines as in the case with the
work by Ahrens et al., but we may on the other hand see distortions amounting from the structure of the
abstract syntax tree modelling the code.

Collaboration & Attention We find the work by Cheng et al. (Cheng et al., 2022), which explores
visualisation of other developers’ gaze in a collaborative setting, inspiring. It may be worthwhile to
explore a combination of the conversational lens, as we are applying here, in a similar setting. For
instance, questions like "how can conversations within one group help another group?" or "how can
the compiler’s knowledge about experts enhance its communication with novices?" could be considered.
As a possible exploration, we can imagine the compiler as a host that is able to store all programming
mistakes made, and visual attention given by, developers. When a new actor enters the environment, the
most frequently looked parts of code or the most possible problematic code regions are already marked
out. In that sense, there is a historical component to the conversation where past actors remain present
in the new conversation.

Programmers’ Attention Earlier work on Attention Investment (Blackwell, 2002) within the PPIG
community has explored the way in which programmers considered the likely costs and rewards of
expenditure of their attention with a notational system. In starting to investigate effective mechanisms
by which this attention can be directed, we are seeking to understand how the broad strokes of the
attention investment model emerge. This could be helpful in exploring whether or not there are places
where this could be done more efficiently - but doing so might also generate information about the
details of the Attention Investment framework; for example, does the misdirection of attention play a
significance role in the way in which programmers perceive risk and reward?

The design of the Progger system also allows the possibility of integrating analyzers to further direct the
programmers’ attention. Such analyzers may be used to, for instance, facilitate a conversational-style
interaction about considerations such as control flow. This may be explored in future work, however one
key distinction to note between analyzers and the compiler is the inherent uncertainty of analysis results.
Where a compiler error is indicative of a critical error that prevents the program from being executed,
analysis tools are susceptible to false positives, and as such may direct the programmer’s attention to
an area of code that ultimately does not require fixing. False positives have previously been related by
analysis tool users as one of the biggest factors in their low usage statistics

(TODO[]: Reference - Emma? J

, therefore the benefits of introducing features prone to false positives into the Progger system would
need to be weighed carefully against the risks.

PPIG 2022 36



Concluding Remarks More widely our results indicate that in the context of programming in the face
of errors, it is difficult to build a general conversational bridge between the programmers and compiler
authors via the crude medium of error messages. However, whilst error messages can be problematic,
the compiler directing the programmers attention to areas of the code, and the programmer being able
to ask "what were you looking at when you did x" seem to be effective. It feels counter intuitive at first
to abandon the richer communicative possibilities of error message text to focus only on the direction
of attention, but it may prove a productive route for further exploration. Sometimes in conversations,
it seems that less is more, especially when one of the participants (the compiler) does not really know
what they are trying to say, and can not empathise effectively with the other.

6. References

Ahrens, M., Schneider, K., & Busch, M. (2019). Attention in software maintenance: An eye tracking
study. , 2-9. doi: 10.1109/EMIP.2019.00009

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B., ... others (2019).
Compiler error messages considered unhelpful: The landscape of text-based programming error
message research. In Proceedings of the working group reports on innovation and technology in
computer science education (pp. 177-210).

Bednarik, R. (2012, feb). Expertise-dependent visual attention strategies develop over time during
debugging with multiple code representations. Int. J. Hum.-Comput. Stud., 70(2), 143-155. doi:
10.1016/j.ijhcs.2011.09.003

Beneteau, E., Richards, O. K., Zhang, M., Kientz, J. A., Yip, J., & Hiniker, A. (2019). Communication
breakdowns between families and alexa. In Proceedings of the 2019 CHI conference on human
factors in computing systems (pp. 1-13).

Blackwell, A. F. (2002). First steps in programming: A rationale for attention investment models. In
Proceedings ieee 2002 symposia on human centric computing languages and environments (pp.
2-10).

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., ... Tamm, S. (2015). Eye
movements in code reading: Relaxing the linear order. In 2015 ieee 23rd international conference
on program comprehension (p. 255-265). doi: 10.1109/ICPC.2015.36

Cheng, S., Wang, J., Shen, X., Chen, Y., & Dey, A. (2022, 06). Collaborative eye tracking based
code review through real-time shared gaze visualization. Frontiers of Computer Science, 16. doi:
10.1007/s11704-020-0422-1

Church, L., Soderberg, E., & McCabe, A. (2021). Breaking down and making up-a lens for conversing
with compilers. In Psychology of programming interest group annual workshop 2021.

Crosby, M., Scholtz, J., & Wiedenbeck, S. (2002, 07). The roles beacons play in comprehension for
novice and expert programmers. In Psychology of programming interest group annual workshop
2002.

Cross, N. (2005). Engineering design methods: strategies for product design. John Wiley & Sons.

Dubberly, H. (2004). How do you design. A compendium of models, 10.

Dubberly, H., & Pangaro, P. (2009). What is conversation? how can we design for effective conversation.
Interactions Magazine, 16(4), 22-28.

Ekman, T., & Hedin, G. (2007a). The jastadd extensible java compiler. In Proceedings of the 22nd
annual acm sigplan conference on object-oriented programming systems, languages and applica-
tions (pp. 1-18).

Ekman, T., & Hedin, G. (2007b). The jastadd system—modular extensible compiler construction.
Science of Computer Programming, 69(1-3), 14-26.

Gongales, L., Farias, K., da Silva, B., & Fessler, J. (2019). Measuring the cognitive load of software
developers: A systematic mapping study. In 2019 ieee/acm 27th international conference on
program comprehension (icpc) (p. 42-52). doi: 10.1109/ICPC.2019.00018

Hedin, G. (2000). Reference attributed grammars. Informatica (Slovenia), 24(3), 301-317.

Kats, L. C., de Jonge, M., Nilsson-Nyman, E., & Visser, E. (2009). Providing rapid feedback in

PPIG 2022 37



generated modular language environments: adding error recovery to scannerless generalized-lr
parsing. ACM SIGPLAN Notices, 44(10), 445—-464.

McCabe, A. T., Soderberg, E., & Church, L. (2021). Progger: Programming by errors (work in progress).
In Psychology of programming interest group annual workshop 2021.

Norman, D. (2013). The design of everyday things: Revised and expanded edition. Basic books.

Pask, G. (1976). Conversation theory. Applications in Education and Epistemology.

Pugh, S. (1981). Concept selection: a method that works. In Proceedings of the international conference
on engineering design (pp. 497-500).

Soderberg, E., & Hedin, G. (2010). Automated selective caching for reference attribute grammars. In
International conference on software language engineering (pp. 2-21).

Storey, M.-A. (2005). Theories, methods and tools in program comprehension: past, present and
future. In /3th international workshop on program comprehension (iwpc’05) (p. 181-191). doi:
10.1109/WPC.2005.38

PPIG 2022 38





