
Towards a Model of Library Use

Ava Heinonen
Department of Computer Science

Aalto University
Ava.Heinonen@aalto.fi

Abstract
Programmers often struggle when using libraries because of difficulties in understanding how the library
can be used to achieve their desired outcome. Much of the existing literature has focused on API usability
and documentation. However, limited research has been done to gain insight into the processes we seek
to support with documentation and usable APIs — the processes of understanding and using libraries.

In this work-in-progress paper, we present initial results of a study examining programmers’ cognitive
processes and mental model development as they refactor an open-source web application to use a new
library. We discuss the analysis of the pilot protocol, and the initial insights gained through this analysis.
The initial insights suggest that developers form understanding of the library and the solution not only
through seeking information but also through interaction with the library by implementing and testing
code.

1. Introduction
Software libraries can be difficult to use (Robillard & DeLine, 2011; Samudio & LaToza, 2022). One
study on the problems programmers face when developing web applications indicated that many of the
problems were caused by programmers struggling to understand how to use libraries and debug solutions
implemented using libraries (Samudio & LaToza, 2022). Studies on library-related questions and help
requests from programmers show that these problems are not limited to web programming (Wang &
Godfrey, 2013; Hou & Li, 2011). As modern software development is highly based on the use of
libraries and other reusable assets, finding ways to help programmers understand how to use libraries
becomes increasingly important (Taivalsaari, Mikkonen, & Mäkitalo, 2019).

Research on learning and using libraries has focused on API usability and documentation — finding so-
lutions for the problem of understanding and using libraries. Studies have sought assessed programmer
difficulties with API documentation (Robillard & DeLine, 2011), evaluated ways to create effective doc-
umentation (Meng, Steinhardt, & Schubert, 2020), and developed ways to assess API usability (Piccioni,
Furia, & Meyer, 2013). However, limited research has been conducted to analyze the processes we seek
to support with API design and documentation — the problem of understanding and using libraries.

In recent years there have been efforts to bridge this gap in the literature. Studies have sought to model
and analyze programmers’ information seeking behavior when developing solutions using an unfamiliar
library (Kelleher & Ichinco, 2019; Kelleher & Brachman, 2023; Sparmann & Schulte, 2023). One
approach was the COIL model, that sought to model programmers’ information seeking behavior when
learning to understand new libraries (Kelleher & Ichinco, 2019; Sparmann & Schulte, 2023). The model
describes three stages of the library use process: Information collection stage consisting of seeking
and acquiring relevant information from online information sources, Information organization stage
where the acquired information is organized to form a solution, and solution testing stage where the
solution is implemented and tested (Kelleher & Ichinco, 2019). Another approach was the utilization
of data-frame theory of sensemaking to investigate the cognitive processes underlying programmers
information seeking (Kelleher & Brachman, 2023). Focusing on online information seeking behavior,
they analyzed programmers search terms and navigation behavior to identify different stages in the
sensemaking process (Kelleher & Brachman, 2023). These studies bring insight into developer behavior
when developing the required understanding to implement solutions using unfamiliar libraries. However,

PPIG 2025 – The 36th Annual Workshop of the Psychology of Programming Interest Group, Belgrade, Serbia, September 2025

www.ppig.org 38



these studies do not aim to analyze the motivations underlying the behavior. Therefore, the question of
what programmers seek to achieve, and what is the understanding they seek to form to achieve it remains.

While the recent studies have focused on programmer behavior, literature from the early years of soft-
ware libraries and software reuse developed theories on the tasks of using libraries and the understanding
required to conduct these tasks (Krueger, 1992; Détienne, 2002; Fischer, 1987). These studies identi-
fied what a programmers has to do to successfully use a library. They theorize, that library use would
include locating and selecting suitable artifacts to use (Krueger, 1992), coordinating artifacts to form
solutions (Fischer, 1987), modifying artifact behavior through arguments to achieve the desired behav-
ior (Krueger, 1992; Détienne, 2002), and integrating artifacts into the program code (Krueger, 1992).
Early literature on reuse also theorizes about the types of knowledge programmers would need to con-
duct reuse tasks (Fischer, 1987; Krueger, 1992). This includes knowledge about the library, the artifacts
it provides, and how those artifacts can be configured into solutions (Krueger, 1992; Fischer, 1987).
It also includes knowledge about the function and interface of the individual artifacts (Krueger, 1992;
Fischer, 1987). While it is quite possible that these theories apply to modern software reuse as well,
technology has rapidly changed in the last 30 years. Therefore, assessing the degree to which these
theories hold in modern programming environments is required.

In this paper, we discuss an ongoing study investigating the tasks of library use in modern software
development environments. The study aims to analyze the tasks involved in using and selecting libraries,
and the understanding required to complete these tasks. Specifically we seek to answer the following
research questions:

RQ1 What are the tasks included in using and selecting libraries?

RQ2 What do developers need to understand about the library and the task situation to conduct these
tasks?

RQ3 How do developers form this understanding?

RQ3.1 What information do developers seek?

RQ3.2 What activities do programmers conduct to acquire and process information?

RQ4 How do programmers move between the tasks during a library use situation?

To this end, we analyze the think-aloud protocols of professional developers learning to use a library for
a refactoring task. In this work-in-progress paper, we discuss the study methodology and the ongoing
data analysis process. Furthermore, we discuss our initial observations.

2. Methodology
We used the think-aloud method to study developers’ cognitive processes when refactoring an open-
source web application to use a new library. The think-aloud method is a well-established technique
used to study cognitive processes in various fields (Ericsson & Simon, 1980; Panadero, Pinedo, & Ruiz,
2025).

2.1. Study Task and Study Process
In the study, participants worked on refactoring the front-end of an open source Web Application Habit-
ica1 to use a new time and date library instead of Moment.js. Each participant had one hour to work on
selecting a library to use and beginning to refactor the Habitica front-end. The participants were assured
that they were not expected to complete the task. Participants were allowed to select which parts of the
front-end code to refactor. However, they were instructed that one possible starting point could be the
calculateTimeTillDue() method in the task.vue file. This was done so that participants could focus on
the selection and refactoring tasks and not on deciding on a suitable starting point.

1https://github.com/HabitRPG/habitica

PPIG 2025 – The 36th Annual Workshop of the Psychology of Programming Interest Group, Belgrade, Serbia, September 2025

www.ppig.org 39



Participants were provided a laptop. The laptop had Visual Studio Code IDE with the Habitica source
code already open. Habitica was already running in the background and the participants could view the
Habitica application in the browser. The browser window with Habitica had developer tools already
open. In another browser tab, we had a list of potential Moment replacements provided by the Moment
team open 2.

Before the study, participants were asked to respond to a background survey. The survey contained
eight questions about the participant’s employment, development experience, and familiarity with the
technologies used in the study.

The study procedure was divided into two phases. In the first phase, participants were informed about
the study and the study task. Participants received verbal and textual descriptions of the study task and
the opportunity to ask questions. Participants were also instructed about think-aloud.

In the second phase, participants worked on a refactoring task. The laptop screen was recorded, the
participant was filmed, and their voice was recorded during the task. If the participant requested not to
be filmed, only their vocalizations were recorded.

A researcher sat with the participant, making notes, and asking the participant to vocalize their thoughts
if they were silent for more than 30 seconds.

2.2. Participants
Twelve participants participated in the data collection. All participants were, at the time of data collec-
tion, employed in software development roles. All participants had some experience with JavaScript and
web development.

Participants were allowed to speak either Finnish or English during the think-aloud. All participants
were required to have good enough English or Finnish skills to communicate their thoughts in either
language. Two of the participants spoke Finnish, and eight spoke English. However, from the English
speakers all spoke English as a second language.

Due to technical difficulties, the data collected from two participants could not be used. In these two
cases, no sound was recorded, and thus the think-aloud data was lost. Therefore, the final data set
contains data from 10 participants.

Participants were recruited through posters and contacts in companies and other organizations. Partici-
pants received a 10 euro gift card to a coffee shop for participation.

2.3. Data Analysis
Data analysis is currently in progress. We use qualitative coding to analyze the think-aloud protocols.
The protocols were first segmented into segments corresponding to one activity. Then a codebook was
developed using existing literature on library learning and use, and the analysis of a pilot protocol. The
protocols were then coded, while iteratively improving on the codebook as new topics emerge from the
data.

2.3.1. Segmentation
First, after the think-aloud protocols had been transcribed, the protocols were segmented into segments
corresponding with a an activity, a coherent set of actions that achieve one goal. For example, one
activity could be writing a piece of code, information seeking activity such as searching or reading, or
cognitive activity such as formulating a plan.

2.3.2. Code Book and Code Book Development
Initial codebook was developed using existing literature on library learning and use, and the analysis of
a pilot protocol. The initial codebook was then tested by applying it to protocols, and further revised.
The initial codebook was then iteratively revised throughout the coding process.

The initial codebook contains the following codes: 1) Activities, 2) Information needs, 3) Mental Mod-

2https://blog.logrocket.com/5-alternatives-moment-js-internationalizing-dates/

PPIG 2025 – The 36th Annual Workshop of the Psychology of Programming Interest Group, Belgrade, Serbia, September 2025

www.ppig.org 40



els, 4) Tasks, and 5) Stages.

Activities refer to activities conducted by the participant. These are identified based on both the transcript
and the screen recording.

Information needs refer to the information participant is seeking to acquire. For example, in the quota-
tion below participant seeks information about the return value of an API method:

". . . What does this return? The diff function...

. . . Maybe it already returns the duration.

Let’s see.

[...] . . . Okay, so it already returns a duration"

Mental Models refer to participant’s understanding of some aspect of the library or the task and the task
context. For example, in the quotation below participant utterances indicate their understanding of what
an API method does:

"Returns the end of date for the given date.

Okay, so it will also change it to just different time, but the same date."

Tasks refer to the task participant is working on. We used existing literature on library use to identify an
initial set of tasks we expected to encounter in the data. This list was further refined as more data was
analyzed. For example, in the quotation below participant identifies an API method that they believe
they can use in their solution:

"...so now I’m looking if they have like a function that is named in a similar way, because
it’s like a pretty intuitive way to name a function.

So I search,uh, subtract.

The defined number of seconds from the given date.

So it looks like this is this function."

Stages refer to the stage of the task. During the analysis of the pilot protocol, we identified four stages of
a refactoring task. These were: 1) Understanding the goal, where participant forms good enough under-
standing of the functionality to be refactored to start refactoring it, 2) Solution Design, where participant
forms an understanding of how the desired functionality can be achieved using their selected library, 3)
Solution Implementation, where participant implements the solution, and 4) Solution evaluation where
the participant seeks to evaluate to what extent the implemented solution achieves their goals. For ex-
ample, the below quotation is from an evaluation stage where the participant prints the value returned
by an API call they had implemented to verify that it works as they intended it to:

"So, I’m just going to paste this here, just to see if it prints falses in the console.

. . . date is false which okay good I consider this a success"

2.3.3. Current Status
Data analysis is currently ongoing. The first round of coding has been conducted using the initial code-
book. The codes from the first round are currently being analyzed and consolidated to develop the final
codebook.

After the final codebook has been developed, a second round of coding will be conducted using the final
codebook.

PPIG 2025 – The 36th Annual Workshop of the Psychology of Programming Interest Group, Belgrade, Serbia, September 2025

www.ppig.org 41



2.4. Initial Insights
The first round of coding has allowed us to develop some initial insights. In contrast to the COIL model
that highlights the importance of online information sources in learning to use libraries (Kelleher &
Ichinco, 2019), our data seems to indicate that programmers also learn to understand how artifacts work
and how they can be used by trial and error and by observing their behavior in a program. Multiple
participants indicated, that as they were implementing code they were trying things out to see how it
works or if it would work. One participant even commented on this stating “I find it easier to try things
out rather than think” as they were testing which way around they should order two API methods.

Participants also indicated, that using artifacts allowed them to test their hypotheses about the artifacts
and their use. For example, one participant was trying to figure out the arguments to give to an API
method by reading API documentation, and stated: “ok anyway, I think if I don’t import and don’t test
it I don’t get any clue that my understanding is correct from this”.

Our current hypothesis is, that interaction with the IDE plays an important role in learning to understand
how library artifacts work and can be used. It seems to be used for hypothesis verification by testing out
hypotheses of artifacts and their use. It may also be used for gaining insight into code behavior when the
programmer does not have good enough mental models to be able to mentally simulate code execution.

This would be in contrast with prior literature on API learning (Kelleher & Ichinco, 2019; Sparmann &
Schulte, 2023; Kelleher & Brachman, 2023), in which learning is assumed to occur primarily through
reading online information sources. This would also indicate avenues for supporting learning to under-
stand libraries through IDE tools.

PPIG 2025 – The 36th Annual Workshop of the Psychology of Programming Interest Group, Belgrade, Serbia, September 2025

www.ppig.org 42



3. References
Détienne, F. (2002). Software reuse. In Software design—cognitive aspects (pp. 43–55). Springer.
Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological review, 87(3), 215.
Fischer, G. (1987). Cognitive view of reuse and redesign. IEEE Software, 4(4), 60.
Hou, D., & Li, L. (2011). Obstacles in using frameworks and apis: An exploratory study of program-

mers’ newsgroup discussions. In 2011 ieee 19th international conference on program compre-
hension (pp. 91–100).

Kelleher, C., & Brachman, M. (2023). A sensemaking analysis of api learning using react. Journal of
Computer Languages, 74, 101189.

Kelleher, C., & Ichinco, M. (2019). Towards a model of api learning. In 2019 ieee symposium on visual
languages and human-centric computing (vl/hcc) (pp. 163–168).

Krueger, C. W. (1992). Software reuse. ACM Computing Surveys (CSUR), 24(2), 131–183.
Meng, M., Steinhardt, S. M., & Schubert, A. (2020). Optimizing api documentation: Some guidelines

and effects. In Proceedings of the 38th acm international conference on design of communication
(pp. 1–11).

Panadero, E., Pinedo, L., & Ruiz, J. F. (2025). Unleashing think-aloud data to investigate self-
assessment: Quantitative and qualitative approaches. Learning and Instruction, 95, 102031.

Piccioni, M., Furia, C. A., & Meyer, B. (2013). An empirical study of api usability. In 2013 acm/ieee
international symposium on empirical software engineering and measurement (pp. 5–14).

Robillard, M. P., & DeLine, R. (2011). A field study of api learning obstacles. Empirical Software
Engineering, 16, 703–732.

Samudio, D. I., & LaToza, T. D. (2022). Barriers in front-end web development. In 2022 ieee symposium
on visual languages and human-centric computing (vl/hcc) (pp. 1–11).

Sparmann, S., & Schulte, C. (2023). Analysing the api learning process through the use of eye tracking.
In Proceedings of the 2023 symposium on eye tracking research and applications (pp. 1–6).

Taivalsaari, A., Mikkonen, T., & Mäkitalo, N. (2019). Programming the tip of the iceberg: software reuse
in the 21st century. In 2019 45th euromicro conference on software engineering and advanced
applications (seaa) (pp. 108–112).

Wang, W., & Godfrey, M. W. (2013). Detecting api usage obstacles: A study of ios and android
developer questions. In 2013 10th working conference on mining software repositories (msr) (pp.
61–64).

PPIG 2025 – The 36th Annual Workshop of the Psychology of Programming Interest Group, Belgrade, Serbia, September 2025

www.ppig.org 43




