
Mining Qualitative Behavioral Data from Quantitative
Data: A Case Study from the Gender HCI Project

Laura Beckwith1, Thippaya Chintakovid2,
Susan Wiedenbeck2, and Margaret Burnett1

1 Oregon State University
Department of Computer Science and Electrical Engineering

Corvallis, Oregon 97330
{beckwith, burnett}@eecs.orst.edu

2 Drexel University
College of Information Science and Technology

Philadelphia, PA 19066
{thippaya.chintakovid, susan.wiedenbeck}@cis.drexel.edu

Abstract. Recent research has shown that gender differences exist that influ-
ence the ways that males and females work with problem-solving software.
These gender differences may put females at a disadvantage in competing for
jobs requiring these skills. Earlier research has shown the existence of gender
differences in confidence that affects feature usage and adoption; however these
findings have raised new questions. We are seeking answers to these questions
through qualitative methods. The case study we present here documents our
methodology and may be used as a guide for others embarking on similar quali-
tative analyses.

1 Introduction

Although there have been gender studies designed to understand and ameliorate the
low representation of females in the computing field [9, 15], there has been little em-
phasis on software’s design attributes and how these design attributes affect males’
and females’ performance in computing tasks. Building upon theories and research
about gender differences from a number of domains [4], we have begun investigating
whether there are features within software that interact with gender differences.

These investigations are just beginning, but there are already interesting results
emerging. We carried out a study in which we gave male and female spreadsheet
users two spreadsheet debugging tasks and an environment containing a number of
features that support such debugging tasks. A summary of our three main findings is
presented below. A more complete description of the experiment and the results can
be found in [5].

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 242 - 254

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

• Females had lower self-efficacy (i.e. confidence) than males did about their abili-
ties to debug. Further, females’ self-efficacy was predictive of their effectiveness
at using the debugging features (which was not the case for the males).

• Females were less likely than males were to accept the new debugging features.
One reason females stated for this was that they thought the features would take
them too long to learn. Yet, there was no real difference in the males’ and fe-
males’ ability to learn the new features.

• Although there was no gender difference in fixing the seeded bugs, females in-
troduced more new bugs—which remained unfixed. This is probably explained
by low acceptance of the debugging features: high effective usage was a signifi-
cant predictor of ability to fix bugs.

The data collection mechanisms we used in the above study produced detailed data
on the actions that participants engaged in and the time they spent on them while
debugging. We decided that a more in-depth investigation of the participants' behav-
iors would provide further insights into gender differences surrounding their feature
usage. Toward that end, we embarked on a qualitative investigation.

Looking at users’ behavior using qualitative analyses (as in [23, 24]) normally in-
cludes users’ verbal data sometimes in combination with their captured computer
actions. However, in our study we have only users’ computer actions, no verbal data
as they worked through their task.

Going from a large collection of data gathered from the study to a qualitative in-
vestigation of some parts of it raises a number of issues to overcome and decisions to
be made. In this paper, we present a case study of our journey down this path, with
the issues we encountered and decisions we made highlighted along the way. The
case study is of ongoing work, so the end of the story is not yet available. Still, in
presenting the part of the work we have done so far, we hope to obtain useful feed-
back from others about the decisions we have made, and to share our experience with
others who may find themselves in similar situations.

2 Experiment

A full description of the experimental design of our quantitative study can be found in
[5]. Here we present only the portions of the methodology needed to understand the
qualitative part of the study.

2.1 Participants and Procedures

The 27 male and 24 female participants (mostly business students) started by filling
out a pre-session questionnaire which collected participant background data and in-
cluded self-efficacy questions based on a slightly modified version of Compeau and
Higgins’ validated scale [12]. The following background data were collected: gender,
major, year or degree completed, GPA, programming experience (to bar participants
with more programming experience than is usual for business students), spreadsheet

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

experience, previous use of the study’s prototype environment, and whether English
was their primary language.

All participants received the same treatment; the only independent variable was
gender. Each participant attended one session. The participants were seated one per
computer in a small lab. After participants completed the questionnaire, we adminis-
tered a 35-minute “hands-on” tutorial to familiarize participants with the environment.
The participants were then given two spreadsheet debugging tasks. We captured their
actions (mouse clicks, keystrokes, and the system’s feedback) in electronic tran-
scripts, as well as their final spreadsheets. At the conclusion of each task, we admin-
istered post-task questionnaires in which participants self-rated their performance on
the task. The second task’s post-session questionnaire also included questions assess-
ing participants’ comprehension of features in the environment.

2.2 Environment

The debugging features that were present in this experiment were part of WYSIWYT
(“What You See Is What You Test”). WYSIWYT is a collection of testing and de-
bugging features that allow users to incrementally “check off” or “X out” values that
are correct or incorrect, respectively [8]. In addition, arrows that allow users to see
the dataflow relationships between cells also reflect WYSIWYT “testedness” status at
a finer level of detail.

The underlying assumption behind WYSIWYT is that, as a user incrementally de-
velops a spreadsheet, he or she can also be testing incrementally. Figure 1 shows an
example of WYSIWYT in Forms/3 [7], the research spreadsheet environment used in
this experiment. In WYSIWYT, untested formula cells (i.e., cells with non-constant
formulas) have red borders (light gray in this paper). Whenever users notice a correct
value, they can place a checkmark () in the decision box at the corner of the cell they
observe to be correct: this communicates a successful test. Behind the scenes, check-
marks increase the “testedness” of a cell according to a test adequacy criterion based
on formula expression coverage (described in [21]), and this is depicted by the cell’s
border becoming more blue (more black in this paper). Also visible in the figure, the
progress bar (top) reflects the testedness of the entire spreadsheet.

Instead of noticing that a cell’s value is correct, the user might notice that the value

Figure 1. An example of WYSIWYT in Forms/3

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

is incorrect. In this case, instead of checking off the value, the user can put an X-
mark in the cell’s decision box. X-marks trigger fault likelihood calculations, which
cause cells suspected of containing faults to be colored in shades along a yellow-
orange continuum (shades of gray in this paper), with darker orange shades given to
cells with increased fault likelihood. Figure 2 shows an example of this behavior in
one of the spreadsheets the participants debugged. The intent is to lead the user to the
faulty cell (colored darkest orange).

The optional dataflow arrows are colored to reflect testedness of specific relation-
ships between cells and subexpressions. (The user can turn these arrows on/off at
will.) In Figure 2, the user has popped up Quiz5’s arrow, which shows both that
Quiz5 is referenced in Quiz_Avg’s formula and that this relationship is not yet tested.

The way these features are supported is via the Surprise-Explain-Reward strategy
[19, 22, 26]. If a user is surprised by or becomes curious about any of the feedback of
the debugging features, such as cell border color or interior cell coloring, he or she
can seek an explanation, available via tool tips (Figure 2). The aim of the strategy is
that, if the user follows up as advised in the explanation, rewards will ensue [22].
Some of the potential rewards are functional—such as being led directly to a bug—
and some are affective—such as increased progress in the progress bar. One aspect of
interest in our quantitative experiment was whether, if gender differences in confi-
dence were present, they might impact Surprise-Explain-Reward’s success in encour-
aging users to approach and adopt new features.

Figure 2. The user notices an incorrect value in Course_Avg—the value is obviously too
low—and places an X-mark in the cell. As a result of this X and the checkmark in
Exam_Avg, eight cells are identified as being possible sources of the incorrect value, with
some deemed more likely than others. The (lower) progress bar reflects the current status of
fault likelihood feedback

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

2.3 Tutorial

In the tutorial, participants performed actions on their own machines with guidance at
each step. The tutorial did some teaching of the checkmark feature (including its
associated testedness-colored arrows feature), but did not include any debugging or
testing strategy instruction. The tutorial did no teaching of the X-mark feature. In-
stead, participants were simply shown that it was possible to place X-marks and given
time to figure out any aspects of the feedback that they found interesting. This design
allowed us to gather information on three types of “newness” of software features:
one type corresponding to the traditional way of thinking about formula errors
(namely, formula editing), another type not previously encountered but explicitly
taught (checkmarks and arrows), and a third type completely untaught (X-marks).

Half of the tutorial sessions were presented by a male graduate student and half
were presented by a female graduate student. This design ensured that approximately
50% of males were instructed by a same-gender instructor and 50% by an opposite-
gender instructor (and likewise for the females) [25], serving to distribute any gender
effect of the tutorial presenter equally over the two genders.

2.4 Tasks

The experiment consisted of two spreadsheets, Gradebook and Payroll (Figure 2
and Figure 3). To make the spreadsheets representative of real end-user spreadsheets,
Gradebook was derived from an Excel spreadsheet of an (end-user) instructor,
which we ported into an equivalent Forms/3 spreadsheet. Payroll was designed by
two Forms/3 researchers using a payroll description from a real company.

These spreadsheets were each seeded with five faults created by real end users.
From the collection of faults left in these end users’ final spreadsheets, we chose five
that provided coverage of the categories in Panko’s classification system [18] (based
upon Allwood’s classification system [1]).

The participants were provided these Gradebook and Payroll spreadsheets
and descriptions, with time limits of 22 and 35 minutes, respectively. The experiment
was counterbalanced with respect to task order so as to distribute learning effects
evenly. The participants were instructed, “Test the … spreadsheet to see if it works
correctly and correct any errors you find.”

Figure 3. The Payroll spreadsheet

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

3 Development of Research Questions and Codes

The development of the research questions for our qualitative study was intertwined
with and partially driven by the development of a set of codes to apply to the tran-
scripts of participants’ actions obtained from our study. The coding was a way of
assigning each action, or set of actions, into categories that could later be used to
answer questions about participants’ behaviors. Developing the categories necessi-
tated deriving research questions which we then used to determine the codes that
would best allow us to answer those questions.

To develop our research questions, beyond our more basic questions of why we
found differences, we relied on two procedures. The first was to develop our research
questions based on casual observations the researchers had made during the quantita-
tive study itself as the participants were working on the tasks and on the types of data
collected in the transcripts. For example, when looking at why males had greater
usage of checkmarks, we knew the transcript data would allow us to answer questions
about whether the males placed checkmarks in cells even when doing so did not help
them make testing progress. As our second procedure for generating research ques-
tions, we derived questions based on the theories that govern the way people problem
solve with software. We drew from six theories (see Table 1) that suggested new
research questions or tied into our existing research questions. The list of our re-
search questions can be found in Table 2.

Once we had our questions we developed the codes. We kept the codes as simple
as possible, containing information that would answer as many questions as possible
with the fewest number of codes. It was also important that the codes be easy to ap-
ply, so that the two raters would be clear on which code applied to participants’ ac-
tions, and further that no two codes with contradictory meaning would apply to the
same participants’ actions.

Before each rater began coding the transcripts, one of the raters tested the codes by
applying them to one participant’s transcript. With the insights gained from this pro-
cedure we refined the codes slightly to make them as straightforward to apply as pos-
sible.

In our experiment, two raters coded participants’ actions taken to debug the spread-
sheets and the changes that occurred subsequent to the debugging actions. For
instance, our codings indicated when participants correctly or incorrectly placed
checkmarks or X-marks and whether the checkmarks/X-marks were placed on a deci-
sion box with a questionmark (indicating that a user can make testing progress by
making a decision about the cell’s value), a blank decision box (indicating a decision
has been made for a situation like this one), or a decision box with either a checkmark
or X-mark (a decision has previously been made for this value). Moreover, the raters
coded when participants introduced or fixed bugs, and whether participants read tool-
tip-based explanations (as opposed to merely causing explanations to appear by rest-
ing their mouse near them). The raters also coded changes in testedness of cells, as
indicated by cell borders, and the percentage of likelihood of bugs in the spreadsheet
appearing in the progress bar. Based on the codings, we expected to gain insights into
the participants’ debugging approach.

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

Table 1. A summary of the theories used for the development of our research questions

Theory Description
Minimalist
Learning

Minimalist learning is a method of introducing users to new aspects
of a system through engaging them in activity. The theory is based
on addressing motivation and cognitive issues within software
development. The designer’s focus is on the user’s desire to ac-
complish a real task and balances this goal with the user’s need to
learn (make sense of) other helpful features of the software [10].

Self-efficacy Self-efficacy is a person’s judgment about his or her ability to carry
out a course of action to achieve a certain type of performance.
Bandura argues that achieving a desired type of performance de-
pends on two factors, the skills needed to carry out the task and the
perception of efficacy that will allow the individuals to use their
skills effectively. High self-efficacy is critical in problem solving
because self-efficacy influences the use of cognitive strategies, the
amount of effort put forth, the level of persistence, the coping
strategies adopted in the face of obstacles, and the final perform-
ance outcome [2, 3].

Attention
Investment

The Model of Attention Investment is an analytic model of user
problem-solving behavior that models the perceived costs, benefits,
and risks users weigh in deciding how to complete a task [6].

Norman’s
Action Cycle

Norman’s Action Cycle considers problem solving in two steps:
Execution and Evaluation/Feedback. In the former users look to the
environment for possible actions to move them closer to their goal;
in the latter users determine if the result of their actions had the
desired effect. When users do not have the necessary information
to complete a step this is referred to as a gulf [17].

Diffusion of
Innovation

The Diffusion of Innovation theory [20] describes how a new tech-
nology is adopted by society over time. People fall into 5 groups
based on how soon they choose to adopt the new technology: Inno-
vators, Early Adopters, Early Majority, Late Majority, and Lag-
gards. Innovators are risk-taking technology enthusiasts, and Early
Adopters tend to be visionaries who respond to the potential of the
emerging technology. On the other end of the spectrum, the Late
Majority is cautious, responding to pressure from peers and eco-
nomic necessity; Laggards are even more skeptical and cautious,
questioning both the intrinsic value of the technology and their own
ability to benefit from it.

Information
Gap

According to the Information Gap theory, when a person realizes
they have an information gap, their curiosity about that information
increases. At an optimal level of curiosity a person tries to fill their
information gap by gaining more knowledge [14]. We take advan-
tage of this theory in our Surprise-Explain-Reward methodology,
attempting to surprise the users to raise their curiosity in some as-
pect of the software [26].

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

Table 2. Our research questions

General Question Detailed Questions
a. Is the time spent around a formula edit the same for both
males and females?
b. Do users attempt to fix introduced bugs?
c. Do users test (using checkmarks and/or X-marks) cells
with wrong values after a wrong formula edit?

1. Why did females
introduce more bugs
than males?

d. How long before the user comes back to the original cor-
rect formula?
a. Do users place checkmarks on all cells (whether they
could make testing progress by doing so)?
b. What is users’ mode of testing?
c. Do users appear to be careful in checkmark placement?
d. Do users get into a “testing” mode after making an edit?

2. Why did females
use fewer checkmarks
and arrows?

e. How are arrows used? (e.g., for testing purposes, to un-
derstand relationships among cells – unrelated to testing)
a. Do users read explanations about interior colors after
placing an X-mark?
b. How long from viewing a tool tip about an interior color
do users wait to take one of the suggested actions?
c. What kind of feedback do users see on the screen after
they place an X-mark? Does this appear to effect their deci-
sions?
d. Do users appear to contemplate more before placing an
X-mark versus placing a checkmark?
e. How long is the X-mark left onscreen (before the user
removes it)?

3. Why were females
less engaged with
X-marks?

f. Do users appear to be wavering in their decision about the
correctness of a cell (by hesitating between marking it cor-
rect and incorrect)?

4 Selection of Transcripts for Coding

Coding and analyzing data one-by-one for each of the original 51 participants would
have required a huge amount of time, and did not seem likely to add valuable infor-
mation beyond what we could learn from a subset of the original participants. Fortu-
nately, unlike the random selection of participants for quantitative research, selecting
participants for qualitative research is far less restrictive; researchers can seek out
those participants with the greatest differences in specific areas of interest [16]. We
selected our participants based on two main characteristics: (1) checkmark and arrow
usage and (2) X-mark usage. Since we were most interested in participants with ex-
treme usage patterns in checkmarks, arrows, and X-marks, we selected participants
with high and low usage in these areas, without knowledge of the gender of the se-
lected participants. The gender of these chosen participants was then checked by

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

another researcher not involved with applying the codings, to ensure a reasonable
distribution by gender. We believed it was important that the two raters not know the
gender of the participants in order to avoid bias in applying the codings and doing the
early analysis of the data.

In the original statistical study that produced these data, there were 51 participants.
Through the method described above we selected 22 participants. Both raters coded
all the transcripts from the 22 participants, which took approximately 160 hours in
total.

The raters applied the codes by stepping through each participant’s actions (as
documented in the transcripts) while watching the feedback the participants observed
by “replaying” the transcripts. For example, if the participant’s action was to place a
checkmark on a cell, the transcript shows that the participant placed this mark, and by
observing what the participant’s spreadsheet looked like after that action, the rater
was able to determine whether the checkmark was placed correctly or incorrectly. A
second example is that the transcripts contained the information about when partici-
pants changed a cell’s formula, and the raters would state whether this was an edit on
a formula that had previously been correct (therefore, participants introduced a bug),
or whether it was on a buggy cell, but the edit did not fix the bug (referred to as an
attempted fix).

5 Inter-Rater Reliability

Once both raters had coded each transcript, one of the raters began the task of check-
ing for reliability between the coded transcripts. Inter-rater reliability is a measure of
the level of consistency among raters applying the same codes to the same data. It is
calculated by counting the agreements and disagreements between the raters [11].
Differences can occur for many reasons, such as a poorly specified coding or differ-
ences in opinions. Determining the reliability is an important aspect of the qualitative
analysis, since all future statements and conclusions on the meaning of the data are
determined based on the codings. If the two raters have little agreement in their cod-
ings, the corresponding results and conclusions will not be valid.

In our coding we found an example of a code that was not specific enough and led
to differences in the way each rater applied the code. The two raters applied the code
for tool-tip-based explanations differently; one rater was more systematic in the appli-
cation of the code while the other rater chose only to apply the code in the places
where it was clear the participant was or was not reading the explanation. (When
more than three explanations were displayed in one second we reasoned that the par-
ticipants were probably not reading these. This is also supported by observations
made by the researchers during the quantitative study itself.) If the specification of
the code had been more specific, this difference in code application might not have
occurred.

However, this unclear specification also brought to our attention the inferences and
interpretation the raters had to make regarding the explanations. This same level of
inference/interpretation was not required with the other codes.

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

In light of the differences in the way the raters applied the codings of tool-tip ex-
planations and the interpretation required, we decided to determine the inter-rater
reliability both including and excluding these explanations. The inferences on the
part of the raters in applying the explanation codes meant that answering research
questions relevant to explanations was based on data less reliable than the other re-
search questions.

We conducted the reliability analysis in three steps (we are currently working on
steps 1 and 2):

1. We counted agreements and disagreements between original codings by
Rater1 and Rater2 (agreements were counted as coding the same line of the
transcript exactly the same – all others were disagreements).

2. The two raters independently reviewed their decisions where disagreements
existed. This review was done to detect and eliminate simple slips in coding.
Changes were then made to the codings where slips occurred.

3. Cohen’s Kappa statistic was applied to the changed codings.
Due to the considerable number of ratings made (around 100 per transcript) we ex-

pect there to be some substantial initial differences in Step 1, but we expect these
differences will decrease in Step 2.

The formal statistical measure applied to the data is the Cohen’s Kappa statistic.
This statistic works by comparing the agreements and disagreements in ratings, and
depends on the types of ratings. As a simple example, if there are three codes that can
be applied, A, B, and C, then all of the agreements of AA coding need to be counted
and all the disagreements of AB and AC counted separately. After counting these,
some simple calculations can be applied to determine the overall reliability [11].

Our codes fall into two categories: objective and subjective. The objective codes
are those that can be determined directly from the transcripts without the rater needing
to make a judgment call on what the participant is doing. An example of this type of
code is the type of mark a user placed, whether it was an X-mark or checkmark. A
subjective code is one that cannot be directly determined from the transcripts and
requires the rater’s eyes and reasoning to make a judgment about the participant’s
actions. For example, whether or not a checkmark placed was correct or not is a sub-
jective code because this information needed to be determined by the raters. For
calculating Cohen’s Kappa we will use only the subjective ratings the raters made and
ignore the objective ratings.

The next step of analyzing the coded data relies on both the objective and subjec-
tive codes.

6 Analysis of Coded Data

Many methods for analyzing data exist [13, 16] that vary in their detail and level of
interpretation of the data (e.g., whether to let the data speak for itself or use the data
for the further development of theory). When we engage in our data analysis, we plan
to follow the latter of the above descriptions, using the constant comparative method
[16] to relate our findings to the theories in Table 1. Constant comparison is a process
in which each participant is compared to each previously analyzed participant and

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

then sorted into categories (the categories are formed throughout the constant com-
parative analysis). As new participants are analyzed, further theories are generated.
For our research questions we expect to link the categories directly to our theories
(see Table 1), and additionally consider relationships between categories on different
research questions.

Although we just referred to our unit of comparison as a participant, for some of
the research questions a better-quality unit of comparison may be some set of actions
that a participant may complete zero or more times. Before beginning our constant
comparative analysis the unit of comparison for each research question will first be
established. For example, for research question 2a the unit of comparison will be the
set of actions where users are placing checkmarks on many cells all at once. In this
example each participant may have zero or more units.

The following is our method for constant comparison analysis (these steps will be
followed for each research question):

1. For the first unit placed into a category, describe the specifics of that category
(what about this instance makes it standout)

2. For each unit after the first:
a. Compare it with all other units already analyzed
b. If it fits into an already created category, add it (specifying any

changes made to that category to accommodate this specific unit). If
it does not fit into an existing category, create a new category with
the specific differences between this and the other existing categories.

3. Explore and document relationships and patterns across categories
4. Integrate data and theories to yield understanding of findings in relation to

theories presented in Table 1.

7 Conclusion

This paper describes the methodology we followed (and are still engaged with) in a
qualitative analysis of gender differences in problem-solving software features. This
analysis is a follow-up investigation to previous quantitative research highlighting
these gender differences. Since we were working with data collected before the de-
sign of the qualitative analysis some of the typical qualitative procedures needed to be
adapted to accommodate the data we had collected. For example, collection of data in
traditional qualitative studies can be modified as the study progresses to answer ques-
tions generated by the earlier findings. However, in our study all the data we had
available to us had been collected during our quantitative analysis.

During each step of the analysis we minded reliability issues. In particular we took
reliability in the raters’ codings seriously since all future analysis relies upon these
codings. Another reason for being careful and intentional in small choices is the
enormous amount of time several of the steps took to complete. Both the codings and
the inter-rater reliability combined will have taken us hundreds of hours to complete
(when finished), which is prior to any of the analysis of the coded data.

Despite the extensive time involved in qualitative analysis, we expect a payoff that
will enhance the data obtained from the quantitative study. We anticipate that our

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

findings will considerably increase our understanding of how the existing theories
apply to gender differences in end-user problem-solving software.

8 Acknowledgements

We would like to thank Shraddha Sorte for her help in participant selection, and
Curtis Cook for his assistance with general ideas regarding analysis. This work was
supported in part by Microsoft Research, by NSF grant CNS-0420533, and by the
EUSES Consortium via NSF grants ITR-0325273 and CCR-0324844.

References

1. Allwood, C.: Error detection processes in statistical problem solving. Cognitive Science 8, 4
(1984) 413-437

2. Bandura, A.: Self-efficacy: Toward a unifying theory of behavioral change. Psychological
Review 8, 2 (1977) 191-215

3. Bandura, A.: Social Foundations of Thought and Action. Englewood Cliffs NJ: Prentice
Hall, (1986)

4. Beckwith, L. and Burnett M.: Gender: An important factor in end-user programming envi-
ronments? In Proc. IEEE Symposium on Visual Languages and Human-Centric Computing
(2004) 107-114

5. Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C., Sorte, S., and Hastings, M.: Effec-
tiveness of end-user debugging software features: are there gender issues? ACM Conference
on Human Factors in Computing Systems, April 2005 (to appear)

6. Blackwell, A., First steps in programming: a rationale for Attention Investment models. In
Proc. IEEE Human-Centric Computing Languages and Environments, (2002) 2-10

7. Burnett, M., Atwood, J., Djang, R., Gottfried, H., Reichwein, J. and Yang, S.: Forms/3: A
first-order visual language to explore the boundaries of the spreadsheet paradigm. Journal
of Functional Programming 11, 2 (2001) 155-206

8. Burnett, M., Cook, C. and Rothermel G.: End-user software engineering. Communications
of the ACM 47, 9 (2004) 53-58

9. Camp, T.: The incredible shrinking pipeline. Communications of the ACM 40, 10 (1997)
103-110

10. Carroll, J.M. (ed.): Minimalism beyond “The Nurnberg Funnel”. Cambridge, MA: M.I.T.
Press (1998)

11. Cohen’s Kappa, http://www-class.unl.edu/psycrs/handcomp/hckappa.PDF accessed: Janu-
ary 28, 2005

12. Compeau, D. and Higgins, C.: Computer self-efficacy: development of a measure and
initial test. MIS Quarterly 19, 2 (1995) 189-211

13. Dey, I.: Qualitative data analysis: A user-friendly guide for social scientists. London: Rout-
ledge, (1993)

14. Lowenstein, G.: The psychology of curiosity, Psychological Bulletin 116, 1 (1994) 75-98
15. Margolis, J., Fisher, A., Miller, F.: Caring about connections: Gender and computing, IEEE

Technology and Society Magazine 18, 4 (1999) 13-20
16. Maykut, P, and Morehouse, R.: Beginning Qualitative Research, London: The Falmer

Press, (1994)

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

17. Norman, D. A.: The Invisible Computer: Why Good Products Can Fail, The Personal
Computer Is So Complex, and Information Appliances Are the Solution. Cambridge, MA,
MIT Press, (1998)

18. Panko, R.: What we know about spreadsheet errors. Journal of End User Computing 10, 2
(1998) 15-21

19. Robertson, T. J., Prabhakararao, S., Burnett, M., Cook, C., Ruthruff, J., Beckwith, L. and
Phalgune, A.: Impact of interruption style on end-user debugging. In Proc. CHI 2004, ACM
Press (2004) 287-294

20. Rogers, E. M.: Diffusion of Technology. 4th Edition. New York, the Free Press, 1995.
21. Rothermel G., Burnett M., Li L., Dupuis, C. and Sheretov, A. A methodology for testing

spreadsheets, ACM Transactions on Software Engineering and Methodology 10, 1 (2001)
110-147

22. Ruthruff, J., Phalgune, A., Beckwith, L., Burnett, M. and Cook, C.: Rewarding ‘good’
behavior: End-user debugging and rewards. In Proc. IEEE Visual Languages and Human-
Centric Computing (2004) 115-122

23. Scholtz, J. and Wiedenbeck, S.: Using unfamiliar programming languages: The
effects of expertise. Interacting with Computers 5, 1 (1993) 13-30.

24. von Mayrhauser, A. and Vans, A.M.: Program understanding behavior during debugging of
large scale software. In Proc. Empirical Studies of Programmers, ACM Press (1997) 157-
179.

25. Whitworth, J. E., Price, B. A. and Randall, C. H.: Factors that affect college of business
student opinion of teaching and learning. Journal of Education for Business 77, 5 (2002)
282-289

26. Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham, M. and
Rothermel, G.: Harnessing curiosity to increase correctness in end-user programming. In
Proc. CHI 2003, ACM Press (2003) 305–312

Beckwith, Chintakovid, Wiedenbeck and Burnett

PPIG 2005 Sussex University www.ppig.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

