
Representation-Oriented Software Development: A
cognitive approach to software engineering

John J. Sung

School of Humanities, University of Sussex, Falmer, Brighton BN1 9QN, UK
j.j.sung@sussex.ac.uk

Software development is necessarily a cognitive process. Software engineers
(cognitive entities) develop software to maximize productivity while delivering
quality software on time. In essence, issues in software engineering can be
conceptualized as a cognitive optimization problem. The utility of this approach
is illustrated by an example in which a cognitive semantic approach is applied
in analyzing the relationship between representations used in describing aspect-
oriented programming (AOP) [14]. This approach is applied within the
framework of distributed cognition such that humans and computers involved in
the software development are conceptualized as one cognitive system that may
be optimized. Optimization of the cognitive system involves analyzing the
human cognition in understanding software and opportunistically offloading the
identified human cognition onto the computer. The analysis of AOP leads to
represented-oriented software development (ROSD), in which the problem of
creating, manipulating and maintaining representations is its main concern.

Introduction

Software development is necessarily a cognitive activity. This fact is the
motivation for applying methodology and concepts from cognitive science in
designing user interfaces [1,2]. Currently, software engineering [3] is mostly a
collection of heuristics and no underlying theory exists to analyze and optimize the
software development process. Much of this characteristics of software engineering
may be attributed to the fact that a theory of software development has to be based
some theory of human cognition. To address this shortcoming of software
engineering, this paper applies concepts such as distributed cognition [4], cognitive
offloading and conceptual integration [5,6,7] to argue for a cognitive approach to
software engineering. In order to understand how this cognitive semantic approach
can solve problems in developing software, it is important to understand particular
issues in software engineering, such as the problem addressed by an emerging
software development paradigm called aspect oriented software development
(AOSD).

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 173 - 187

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

Aspect Oriented Software Development

Object oriented technologies are utilized widely in modern software development.
However, improvements are needed in software practices to handle ever-increasing
demand on software. Aspect oriented software development (AOSD) [8,9] is an
approach that attempts to address this issue from several observations made about
software development. In many cases, developers have to trade-off between clean and
easy to understand implementation with a clear functional decomposition and
optimized implementation that are tangled and hard to understand. The code is
tangled in a sense that the optimized code is the result of merging several functional
components together, making the code hard to understand and change. Therefore, a
way of addressing this issue is to create some base code that is easy to understand and
modify. Then, directives are added to change the base code to optimized code or add
functionality. Aspect oriented programming (AOP) approaches such as AspectJ [10]
and composition filters [11] take this modification of base code approach. Demeter
[12] and HyperJ [13] take another approach in which base code is not required. The
program is written such that there is no dominant decomposition. In a sense, the
linguistic features of Demeter and HyperJ provide directives in weaving the object-
oriented code. In all of these AOSD approaches, the main focus is the separation of
concerns, a different way of modularizing programs.

For the purpose of this paper, concerns are properties or artifacts of the software
that may be desirable. The most prototypical concerns in AOP are properties such as
logging, error handling, performance and persistence. Then, the separation of
concerns becomes the separation of desired artifacts or properties of the software
being developed. Essentially, the separation of concern is a vague notion that
encompasses any type of modularization of the software for the purposes of
adaptability, maintainability, extendibility, and reusability. This vague definition for
separation of concern allows for more flexible modularization of programs than with
OOP in which programs are modularized into class hierarchies. In the end, the goal of
all AOSD approaches is to allow programmers to define and manage these concerns
in such a way that software development process is improved. I will argue that this
goal of separating concerns is part of the human cognition that allows understanding
to occur. When this is taken within the framework of distributed cognition, the
problem of designing tools for software development becomes the problem of
organizing representations for optimizing the distributed cognitive system.

Optimizing Distributed Cognition

Hutchins [4] argues for a distributed view of cognition. The complexity of
navigating a navel vessel requires distribution of cognition such that the crew of the
ship may safely navigate a ship. The task of navigating a ship is distributed among the
crew and every member of the crew has a particular task to perform. Specific
protocols and artifacts facilitate communication for coordinating the distributed
cognitive system to navigate the ship. Similar to ship navigation, cognition for
developing software is also distributed. Depending on the software project the
distributed system could be a single engineer and a computer or a team of engineers

Sung

PPIG 2005 Sussex University www.ppig.org

and a network of computer systems. Therefore, a distributed cognition view of
software engineering would construe the various people, computers and environment
as part of the distributed cognitive system in developing software. For the purpose of
this paper, the cognitive system is construed as a software developer and a computer,
with representations playing a crucial role. The understanding of how representations
are used in software development provides a method for analysis and optimization of
this cognitive system.

The conceptualization of the cognitive system as the computer system and the
developer shifts the priority of the software engineering to the optimization of the
cognitive system by distributing cognition among the different parts of the cognitive
system for software development. Any type of optimization requires that one analyze
the processes for critical paths and find opportunities for minimizing computation and
memory usage. There exist many methods for analyzing the computation and memory
usage of computer programs. However, there are no methods for analyzing human
cognition to optimize the cognitive system as defined above. Latest cognitive science
research could provide the theoretical foundation for such an analytical method for
cognition. In particular, conceptual integration theory (CIT) [5,6,7], a theory of
meaning construction from cognitive linguistics [15,16,17], will provide a method for
analyzing cognition during software development. CIT provides a method for
describing and identifying human cognition that may be offloaded onto the computer.
I am assuming that offloading cognition from the human to the computer in general
will optimize the cognitive system, i.e. improve software development.

Conceptual Integration Theory

Conceptual integration theory (CIT) is a theory of meaning construction arising
from cognitive linguistics. It describes how humans integrate various information
from our sensori-motor system to create meaning. Generally, CIT is used to explain
how we understand language, diagrams and pictures. The explanation takes the form
of an integration network that describes what is necessary in order to understand the
linguistic utterances, diagrams, or pictures. Therefore, it does not describe what
actually happens, but characterize the sort of cognition that would produce the
observed phenomenon. This is adequate for the purpose of analyzing human cognition
to optimize the human-computer cognitive system.

Representations

Another aspect of CIT that is important for this paper is the fact that CIT may be
used to analyze not only language, but also other stimuli that may be meaningful. In
software development, there are many different types of representations used,
representations such as class diagrams, sequence diagrams, collaborations, etc. The
definition of representation for this paper is not limited to these program specific
artifacts. Representations also include other linguistic artifacts such as documentation,
specification, and requirements. The particular representations analyzed in this paper
are program code and diagrams that are used in explaining the optimization of an

Sung

PPIG 2005 Sussex University www.ppig.org

image filter in [14]. Cognitive semantic analysis of understanding the optimization of
the image filter shows that representations are interrelated and this interrelation as
described by the conceptual integration network is the result of human cognition.
Therefore, these interrelations between representations are necessary for the software
developer to understand the implementation and identify possible optimizations. The
cognitive process of interrelating is the cognition that we are interested in offloading
onto the computer. This would make it logical that a purpose of software engineering
should be to identify, describe, modify and manage these representations used during
software development to optimize the human-computer cognitive system by
offloading the cognition required to understand the interrelation between these
representations. The first step towards this approach in which representations are
crucial is the short introduction to the conceptual integration theory below.

Conceptual Integration Theory

Conceptual integration theory is a theory of how we are able to create meaning
from various stimuli. It uses concepts such as mental spaces, mental space elements
and connections to characterize how meaning is constructed. This section introduces
CIT through the “clipper ship” example from Fauconnier and Turner [7]. In 1993, a
modern catamaran is attempting to break the record for sailing from San Francisco to
Boston that was set in 1853 by a clipper ship. A sailing magazine, Latitude, describes
the progress of the catamaran in this manner:

“As we went to press, Rich Wilson and Bill Biewenga were barely
maintaining a 4.5 day lead over the ghost of the clipper Northern

Light, whose record run from San Francisco to Boston they're trying
to beat. In 1853, the clipper made the passage in 76 days, 8 hours.” -
"Great America II," Latitude 38, volume 190, April 1993, page 100

According to the conceptual integration theory, one has to use concepts such as
mental spaces and connections, in order to describe how one understands this
particular passage from Latitude. Mental spaces are small conceptual packets that are
constructed for local understanding and action. In this example, there are two input
mental spaces (input space) that provide the elements for conceptual integration. The
first input space contains the clipper ship that made the voyage from San Francisco to
Boston in 1853. The second input space contains the modern catamaran making the
same trip in 1993. Between the elements within the two input spaces, there are
connections that relate them. These connections may be any type of relations that are
relevant for the analysis, such as over, under, father of, Identity, Representation, etc.
The relevant connection in this example is Analogy1. There are analogical cross-space
connections between Boston of 1853 and 1993, the clipper ship and the catamaran,
San Francisco of 1853 and 1993, and the voyage that the clipper ship and the
catamaran took.

1 Vital relations as described in [7] are capitalized, following Fauconnier and Turner’s

convention.

Sung

PPIG 2005 Sussex University www.ppig.org

Fig. 1. Input Spaces and Connections for the “Clipper Ship” Example

There could be other elements within the mental spaces, such as the captain of the
clipper ship or the skipper for the catamaran and an analogical connection made
between these two elements. Therefore, the elements presented here are not
exhaustive. The input spaces and the cross-space connections between elements only
describe the how we are detecting the similarity between the voyage made by the
clipper ship in 1853 and the voyage made by the catamaran in 1993. It does not
describe how we understand the catamaran’s voyage as a race against the “ghost” of
the clipper ship. In order to describe this process, we have to use the concept of
blended space. Blended spaces are mental spaces in which elements are projected and
some operations take place. In this example, the cities Boston and San Francisco, the
year 1993, the catamaran and the clipper ship are projected onto the blended space.
Notice that many of the elements are fused (such as the city of Boston in 1853 and in
1993 are treated as one city even though they are very different), not projected (such
as the year 1853), or ignored (such as the differing sea conditions between the two
voyages). An important operation that occurs within the blended space is called
elaboration. Elaboration is a mental space operation that allows for “running” of the
blend. To understand the statement, “If the catamaran keeps its lead, the catamaran
will win the race,” we would have to run the blend, i.e. mentally simulate the boat
race to Boston. The conclusion of the elaboration would result in the assertion that the
catamaran will win.

According to the conceptual integration theory, construction of an integration
network is meaning construction and the integration network consists of input spaces
that provide elements for conceptual integration, cross-space connections between the
elements in the inputs spaces, a blended space that contain projected elements from
the input spaces, and operations are applied to the projected elements in the blended
space. This integration network is able to explain how we are able to understand the
race between a modern catamaran and a clipper ship even though the clipper ship took
the journey a century earlier. The conceptual integration theory described through the
“clipper ship” example has been a basic introduction and further details of the theory
should be obtained from [5,6,7].

Sung

PPIG 2005 Sussex University www.ppig.org

Fig. 2. Integration Network for the “Clipper Ship” Example

Optimization of an Image Filter

In this section, the conceptual integration theory introduced above is applied in
analyzing the cognition required to understand the image filter optimization example
in [14]. Kiczales et al. uses this image filter optimization example to show that there
is a trade-off being made between easy to understand and inefficient code, and hard to
understand and efficient code. They argue that an aspect oriented code would be both
easy to understand and efficient. This is achieved by providing linguistic facility that
describes the way in which the code should be optimized. They call these descriptions
for transforming the base code, aspects. The motivation for aspects that allow
separation of concerns is shown by the image filter optimization example.

The image filter shown in Fig. 3 is the or! filter that loops over each pixel within
two images to apply the logical OR operator to the corresponding pixels. The
implementation in Common LISP allocates a new image, then loops over each row
and column of the image to perform the logical OR operator.

Sung

PPIG 2005 Sussex University www.ppig.org

(defun or! (a b)

 (let ((result (new-image)))

 (loop for i from 1 to width do

 (loop for j from 1 to height do

 (set-pixel result i j

 (or (get-pixel a i j)

 (get-pixel b i j)))))

 result))

Loop over all

input image pixels

Store results
Operation on

pixels

Fig. 3. Definition of or! Filter from [14]

Using similar loop structure, primitive logical filters can be programmed. From

these primitive filters, higher level filters, such as horizontal-edge!, can be
built. The necessary filters to implement the horizontal-edge! filter is shown in
Table 1.

Table 1. Filters Necessary for Horizonal Edge Filter from [14]

(defun horizontal-edge! (a)

 (or! (top-edge! a)

 (bottom-edge! a)))

horizontal edge pixels

(defun bottom-edge! (a)

 (remove! a (up! a)))
pixels at bottom edge of a region

(defun top-edge! (a)

 (remove! a (down! a)))
pixels at top edge of a region

(defun remove! (a b)

 (and! a (not! b)))
difference of two images

written using loop primitive;

slightly different loop structure

shift image up, down

written using loop primitive as or! pixelwise logical operations

implementation functionality

Functional decomposition

The above implementation of the horizontal-edge! has a clean component
structure that is easy to understand. The higher level filters are implemented using the
more primitive filters. The functional decomposition diagram shown in Fig. 4 below
shows the functions that are called when horizontal-edge! is called.

Sung

PPIG 2005 Sussex University www.ppig.org

horizontal-edge!

or!

top-edge! bottom-edge!

down! remove! up!

not! and!

Fig. 4. Functional Decomposition of horizontal-edge! from [14]

This functional decomposition could be the result of a conceptual integration
network. In this integration network, each filter function is contained within a mental
space. The similarities between the function names create cross-space connections. If
the functions are organized spatially similarly to the functional decomposition
diagram, the resultant network has similar structural organization as shown in Fig. 5.
The difference is that only the function names are shown in the functional
decomposition diagram and the LISP syntax and method body are left out.
Furthermore, the integration network diagram organizes the linear code into a two
dimensional diagram to produce the functional decomposition diagram. Therefore, the
integration network shown in Fig. 5 describes how the functional diagram could have
been created from the LISP implementation.

(defun or! (a b)

 (let ((result (new-image)))

 (loop for i from 1 to width do

 (loop for j from 1 to height do

 (set-pixel result i j

 (or (get-pixel a i j)

 (get-pixel b i j)))))

 result))

(defun horizontal-edge! (a)

 (or! (top-edge! a)

 (bottom-edge! a)))

(defun top-edge! (a)

 (remove! a (down! a)))

(defun bottom-edge! (a)

 (remove! a (up! a)))

(defun down! (a) …)
(defun up! (a) …)

(defun remove! (a b)

 (and! a (not! b)))

(defun not! (a) …) (defun and! (a) …)

Fig. 5. Function Call Integration Network for horizontal-edge!

There are two things to note from this integration network. First, the structure of
the functional decomposition diagram can be created from the LISP code. Another
way of looking at it is that some cognitive process took place that produced the

Sung

PPIG 2005 Sussex University www.ppig.org

functional decomposition diagram from the LISP implementation. Second, the
functional decomposition diagram provides a view of the implementation. This means
that information contained within the functional decomposition diagram is present in
the implementation and it only needs to be extracted. Therefore, there is no new
information inherent in the diagram.

The integration network in Fig. 5 shows how the functional decomposition diagram
could have been extracted from the LISP code. However, it does not show how we are
able to understand the relationship between the LISP implementation and the
diagram. The integration network in Fig. 6, shows how we understand the functional
decomposition diagram in relation to the LISP implementation. The similarity
between the function names creates the cross-space connection between the particular
function definition and the corresponding box. The cross-space connection in this
case is Representation, which means that the box with a function name represents the
corresponding LISP implementation. The lines between the boxes in the functional
decomposition diagram are connected to the cross-space connections between the
LISP implementation, which are function calls. Therefore, the understanding of the
functional decomposition diagram requires the integration network shown in Fig. 5
and Fig. 6. In essence, the integration network in Fig. 5 is the understanding of
function calls and Fig. 6 is the relation between the function calls and the functional
decomposition diagram.

(defun or! (a b)

 (let ((result (new-image)))

 (loop for i from 1 to width do

 (loop for j from 1 to height do

 (set-pixel result i j

 (or (get-pixel a i j)

 (get-pixel b i j)))))

 result))

(defun horizontal-edge! (a)

 (or! (top-edge! a)

 (bottom-edge! a))) (defun top-edge! (a)

 (remove! a (down! a)))

(defun bottom-edge! (a)

 (remove! a (up! a)))

horizontal -edge!

or!

top-edge! bottom-edge!

down! remove! up!

not! and!

Fig. 6. Integration Network for Understanding the Function Decomposition in Relation to the
LISP Implementation of horizontal-edge! function (only part of the network is
shown)

Sung

PPIG 2005 Sussex University www.ppig.org

Data Flow Decomposition

Another way of decomposing the group of functions related to horizontal-
edge! is to decompose it in terms of the data flow. The dataflow graph from [14] is
shown in Fig. 8 left. In order to understand the data flow graph, one needs to create an
integration network, in which the original image a, which is passed to the
horizontal-edge! function, is traced during program execution as shown in Fig.
7 left. In CIT parlance, the tracing of the image a is an elaboration or a mental
simulation. During this elaboration, a blended space, shown on the right in Fig. 7
right, is created to keep track of the operations that are applied to the image a. At
point (1) in the elaboration, function call to up! is projected onto the blended space.
The call to not! with the result from up! is projected to the blended space at point
(2) in the elaboration. This process continues until the elaboration stops at the end of
the horizontal-edge! function and a conceptual structure that is similar to the
dataflow graph is in the blended space. The dataflow graph in the blended space is
represented as a LISP expression in Fig. 7. However, a diagram could also depict the
conceptual process. It is important that the conceptual structure is same between what
is constructed in the blended space and the dataflow graph and not the actual form of
the representation.

(up! a)

(defun horizontal-edge! (a)

 (or! (top-edge! a)

 (bottom-edge! a)))

(defun bottom-edge! (a)

 (remove! a (up! a)))

(defun remove! (a b)

 (and! a (not! b)))

(defun not! (a) …) (defun and! (a b) …)

(defun up! (a) …)

(not! (up! a))

(and! a

 (not! (up! a)))

Blended space

(3)

(1)

(2)(3)

(1)

(2)

Fig. 7. Integration Network to Understand Data Flow Decomposition (Only the first three steps
in constructing the dataflow graph are shown)

In contrast to the functional decomposition diagram, the dataflow graph is much
more complex to understand. This is due to the mental simulation or elaboration
needed within a blended space to keep track of the projected elements, i.e. the
methods with similar loop structure to the OR filter, visited during the elaboration.
Despite this difference between the two diagrams, the information in the data flow
graph is also present in the LISP code, same as the functional decomposition diagram.
Each of the boxes and the connections present in the dataflow graph can be related to
the LISP code with more effort. The integration network relating the elaboration in
Fig. 7 to the dataflow diagram is not shown for space reasons.

Sung

PPIG 2005 Sussex University www.ppig.org

Optimization

The implementation of the horizontal-edge! function as described above is
well modularized and easy to understand. The higher-level filter is implemented using
more primitive filters. However, this implementation is inefficient in memory usage
as Kiczales et al. point out. There are several intermediate images that are created just
to pass the resultant image from one filter to another. This results in frequent memory
access over large memory space that lead to poor performance. As Kiczales et al.
observe, “The familiar solution to the problem is to take a more global perspective of
the program, …”. This global perspective is the data flow diagram in Fig. 8 left. From
this diagram, it is easy to perceive that the functions up!, down!, or!, and!, and
not! are neighbors in the data flow and potentially, they could be merged. However,
only the or!, and! and not! functions share the same loop structure. Therefore,
these functions can be merged into one function and use the same loop structure such
that several operations are applied to each pixel at the same time. Thus, this new
merged implementation would require less memory access and improve performance.
The data flow diagram showing the neighboring filters having the same loop structure
and the data flow diagram after the functions are merged is shown in Fig. 8.

or!

and!

not!

up!

and!

not!

down!

a

horizontal-edge!

up! down!

a

Fig. 8. Data Flow Diagram Before and After Optimization from [14] (dotted box

indicates neighboring functions with the same loop structure)

An implementation of the optimization is shown in Fig. 9. The optimized code
only creates three intermediate images. The same loop structure is shared between the
or, and, and not sub-filters. Notice that this optimized implementation destroys the
easy to understand functional decomposition and now it is harder to understand. The
functionality of the sub-filters are ‘tangled’ into the shared loop body. This tangled
code leads to maintainability problems: “The tangled code is extremely difficult to
maintain, since small changes to the functionality require mentally untangling and
then re-tangling it” [14]. Therefore, the understanding of the optimized code requires
one to create the integration network that leads to the functional decomposition
diagram from the optimized code. Changes to the functionality requires further step of
making changes to the unoptimized code and then optimizing the code again.

Sung

PPIG 2005 Sussex University www.ppig.org

 (defun horizontal-edge! (a)

 (let ((result (new-image))

 (a-up (up! a))

 (a-down (down! a)))

 (loop for i from 1 to width do

 (loop for j from 1 to height do

 (set-pixel result i j

 (or (and (get-pixel a i j)

 (not (get-pixel a-up i j)))

 (and (get-pixel a i j)

 (not (get-pixel a-down i j)))))))

 result))

only 3 result

images are created

shared loop

structure

sub-filter

operations

Fig. 9. Optimized horizontal-edge! Filter from [14]

The aspect-oriented programming as advocated by [14] solves this problem by
providing linguistic facilities to automate this optimization process. The linguistic
features are directives to identify and merge similar loop structure in the program.
They argue that this approach allows the programmer to maintain the original
functional decomposition while providing optimized code that minimizes memory
access. However, the programmer must still mentally tangle the code in order to
understand how the directives change the code. The solution to this cognitive
operation of tangling code could be obtained if one notices the role of representations
in the form of functional decomposition diagram, data flow diagram, and LISP code
in the image filter example. It is evident that these representations are interrelated
through the conceptual integration networks as described above. These conceptual
integration networks in which the function definitions are inputs can characterize the
creation and understanding of the functional decomposition and data flow diagrams.
Therefore, it would seem likely that if these cognitive processes of tangling and
untangling are offloaded onto the computer, it could potentially improve the
understanding and development of software.

Relationship Between Representations

In the previous section, the conceptual integration networks were used to describe
how we are able to understand the image filter optimization example from [14]. These
integration networks characterize not only the cognition required in understanding the
various representations, it also provides a description of how these representations
could have been constructed. This cognitive semantic analysis exposes several
properties about the representations and their role in software development. These
properties are outlined in the conceptual integration theory as three properties of
integration networks: global insight, unpacking and synchronization. These three
properties taken within the context of distributed cognition and cognitive offloading
suggest that a representation-oriented approach to software development would be
productive.

Sung

PPIG 2005 Sussex University www.ppig.org

The first notion in conceptual integration theory that is relevant in understanding
the role of representations in the image filter optimization example is global insight.
Global insight is the notion that in order to gain a comprehensive understanding, one
has to know the details and the global view of a particular subject. In this case, one
has to know the LISP implementation and the functional decomposition diagram at
the same time. The functional decomposition diagram provides an overview of how
the functions are connected, while the LISP implementation describes what each of
the functions contribute towards the overall functionality of the horizontal-
edge! function. Therefore, the two diagrams provide global insight into the LISP
implementation. Also, the data flow diagram provides global insight, which facilitates
understanding of the optimized code and characterizes how the optimization could
have been solved originally.

The second relevant property of integration networks is the unpacking principle. It
states that the integration network tends to be constructed in such a way that elements
contained within the blended space are sufficient to reconstruct the original
integration network that led to the blended space. In this case, the integration
networks in characterizing how the two diagrams could have been produced could be
reconstructed from the diagrams alone. In essence, one should be able to write the
LISP implementation from the functional decomposition diagram or the data flow
diagram. Intuitively, this is plausible, since software could be developed in such a
way that organization of the functionality is designed first then implemented in LISP.

The last relevant property of integration networks is the propagation of changes. In
the process of constructing meaning, elements in the blended space could interact in
such a way that new elements could be brought forth into input spaces and vice versa.
In the context of representations, some change in one representation could propagate
to other representations. When the original image filter implementation is optimized,
the corresponding functional decomposition and data flow diagrams also reflect this
change in the LISP code. Alternative view is that the change in the data flow diagram
is propagated to the LISP code and the functional decomposition diagram. Either way,
the structural similarity between the diagrams and the LISP code is preserved in this
synchronization process.

Representation Oriented Software Development

The three properties, global insight, unpacking and synchronization, of integration
networks observed in the understanding of the three representations, functional
decomposition diagram, data flow diagram, and LISP code, show that software
development is a multi-representation activity. In a sense, software includes these
representations and others such as code comments, architecture diagrams,
specifications, requirements, etc. and developers create, manipulate and make sense
of these representations. From the cognitive semantic analysis presented above, these
cognitive activities of creating, manipulating and understanding representations can
be characterized by the conceptual integration networks. If role of conceptual
integration networks in understanding representations is taken within the context of
distributed cognition, a new approach to software development emerges. I call this
approach representation-oriented software development (ROSD).

Sung

PPIG 2005 Sussex University www.ppig.org

In ROSD, the central issue is the design, manipulation and maintenance of
representations for optimizing the cognitive system. The cognitive system includes
representations, humans, computers and other artifacts involved in software
engineering. All of these elements interact and coordinate in producing software,
similar to the way a crew of a ship coordinate through artifacts to navigate a ship.
This view of software engineer reconceptualizes the problem of optimizing software
development to the problem of optimizing the cognitive system through redistribution
of cognition. Since computers tend to increase in speed much quicker than humans, it
would be logical to find opportunities to offload human cognition onto the computer.
The conceptual integration theory provides a methodology for finding such
opportunities through its integration networks. These networks characterize the
cognitive processes required in producing and manipulating representations.
Therefore, offloading this cognition would entail that software tools should be
developed to support the developers in designing, manipulating and maintaining these
representations.

Conclusions

The cognitive semantic analysis of understanding the image filter optimization
from [14] within the context of distributed cognition suggests a representation-
oriented software development approach. This approach puts the representations in
software and offloading cognition in processing these representations to the computer
as its main conern. In relation to AOSD, ROSD is more specific in a sense that it
bases its theoretical framework on distributed cognition and conceptual integration
theory. This relationship between AOSD and ROSD is reflected in the image filter
optimization example when the aspect-oriented programming solution in [14] is
conceptualized as offloading cognition required to optimize the image filter onto the
computer. Therefore, the linguistic features proposed by [14] are prompts for
executing the offloaded human cognition.

This work is complementary to the work done by other cognitive scientists in
applying distributed cognition to issues in HCI [18], collaborative working [19],
naturalistic programming [20], and computational aspects of figurative language [24].
The main difference is the application of cognitive semantic theories to find
opportunities for offloading cognition onto the computer. This approach is novel and
there are many opportunities for further development. For instance, the other aspects
of distributed cognition, such as material anchors [21] could be explored, or apply
other cognitive semantic theories such as idealized cognitive models [22] to analyze
and offload cognitive structures and processes onto the computer. Since idealized
cognitive models are shown to be observed in classical mechanics [23], it is highly
likely that software tools that offload cognition in understanding these concepts,
problems and solutions would facilitate providing software tools for science,
engineering and other fields.

Sung

PPIG 2005 Sussex University www.ppig.org

References

1. Norman, D.A.: The Design of Everyday Things. Basic Books, New York (2002)
2. Preece, J., Rogers, Y., Sharp H.: Interaction Design: Beyond human-computer interaction.

J. Wiley & Sons, New York (2002)
3. Sommerville, I.: Software Engineering. 5th Ed. Workingham: Addison-Wesley, (1995)
4. Hutchins, E.: Cognition in the Wild. Cambridge, Mass., MIT Press. (1995)
5. Fauconnier, G., Turner, M.: Conceptual integration networks. Cognitive Science 22 (1996)

133-187
6. Fauconnier, G., Turner, M.: Compression and global insight. Cognitive Linguistics 11, 3/4

(2000) 383-304
7. Fauconnier, G., Turner, M.: The Way We Think: Conceptual blending and mind’s hidden

complexities. Basic Books, New York (2002)
8. Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development.

Boston: Addison-Wesley, (2004)
9. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction. Comm. Of

the ACM. 44 (10), (2001) 29-32
10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Girswold, W.: Getting

started with ASPECTJ. Comm. of the ACM, 44 (10), (2001) 59-65
11. Bergmans, L., Aksit, M.: Composing crosscutting concerns using composition filters.

Comm. of the ACM, 44 (10), (2001) 51-57
12. Lieberherr, K.: Controlling the complexity of software designs. Proc. of the 26th

International Conference on Software Engineering. (2004) 2 - 11
13. Ossher, H., Tarr, P.,: Hyper/J: Multi-dimensional separation of concerns for java. Proc. of

the 22nd International Conference on Software Engineering. (2000) 734-737
14. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,

J.: Aspect-Oriented Programming. In Proc. Of the Europ. Conf. on OOP. Springer-Verlag,
Findland (1997)

15. Croft, W., Cruse, D.A.: Cognitive Linguistics. Cambridge University Press, Cambridge
(2004)

16. Evans, V., Green, M.: Cognitive Linguistics: An introduction. Edinburg University Press,
Edinburg (Forthcoming)

17. Janssen, T., Redeker, G. (Eds.): Cognitive Linguistics: Foundations, scope, and
methodology. Mouton de Gruyter Berlin (1999)

18. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: Toward a new foundation for
human-computer interaction. ACM Trans. On Comp.-Human Interaction (TOCHI), 7 (2),
(2000) 174-196

19. Rogers, Y., Ellis, J.: Distributed cognition: an alternative framework for analyzing and
explaining collaborative working. Journal of Information Technology, 9 (2), (1994), 119-
128

20. Lopes, C.V., Dourish, P., Lorenz, D. H., Lieberherr, K.: Beyond AOP: Toward naturalistic
programming. ACM SIGPLAN Notices, 38 (12), (2003) 34-43

21. Hutchins, E.: Material anchors for conceptual blends. Journal of Pragmatics (in press),
http://hci.ucsd.edu/lab/hci_papers/EH2004-1.pdf

22. Lakoff, G.: Women, Fire and Dangerous Things. Chicago London: Cambridge University
Press. (1987)

23. Giere, R. N.: The cognitive structure of scientific theories. Philosophy of Science 61 (2),
276-296

24. Barnden, J. A., Glasbey, S., Lee, M., Wallington, A.: Domain-transcending mappings in a
system for metaphorical reasoning. In Proc. of the 11th Conference of the European
Chapter of the Association for Computational Linguistics: 57-62

Sung

PPIG 2005 Sussex University www.ppig.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

